
TODO

 WWW.DOYENSEC.COM © DOYENSEC

Security Advisory
Goproxy & Smokescreen Denial Of Service (DoS)

Created by Lorenzo Stella, Doyensec LLC
08/16/2022

http://www.doyensec.com

GoProxy & Smokescreen Security Advisory

Overview

This document summarizes the results of a vulnerability discovered during a separate
engagement activity in the popular elazarl/goproxy library (4.9k stargazers, 925 forks as
of August 2022). The issue was also found in a Stripe-maintained fork (stripe/goproxy),
consequently affecting another widespread library that was using it as a dependency,
stripe/smokescreen, used to mitigate Server-Side Request Forgery (SSRF) attacks.
While security testing was not meant to be comprehensive in terms of attack and code
coverage, we have identified several Denial Of Service (DoS) vulnerabilities that could
severely affect the availability of any software using the aforementioned libraries.

About Us

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.

Copyright 2022. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not
altered except by reformatting it, and that due credit is given. Permission is explicitly
given for insertion in vulnerability databases and similar, provided that due credit is
given. The information in the advisory is believed to be accurate at the time of
publishing based on currently available information, and it is provided as-is, as a free
service to the community by Doyensec LLC. There are no warranties with regard to this
information, and Doyensec LLC does not accept any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information.

 of WWW.DOYENSEC.COM1 5

http://www.doyensec.com
https://github.com/elazarl/goproxy/
https://github.com/stripe/goproxy/
https://github.com/stripe/smokescreen

GoProxy & Smokescreen Security Advisory

Summary

From the stripe/smokescreen's project README:

"Smokescreen is a HTTP CONNECT proxy. It proxies most traffic from Stripe to the external world 1

(e.g., webhooks). Smokescreen restricts which URLs it connects to: it resolves each domain name
that is requested and ensures that it is a publicly routable IP and not a Stripe-internal IP. This
prevents a class of attacks where, for instance, our own webhooks infrastructure is used to scan
Stripe's internal network. Smokescreen also allows us to centralize egress from Stripe, allowing us
to give financial partners stable egress IP addresses and abstracting away the details of which
Stripe service is making the request."

Stripe's Smokescreen proxy is internally created using a fork of the elazarl/goproxy package (stripe/
goproxy), a high-performance network proxy. Its README describes it as:

"A customizable HTTP proxy library for Go (golang), It supports regular HTTP proxy, HTTPS through
CONNECT, and "hijacking" HTTPS connection using "Man in the Middle" style attack."

Both elazarl/goproxy and stripe/goproxy codebases are using the package ioutil to leverage common or
recurring utility functions for reading/writing plain HTTP responses. One of these utilities is the ReadAll
function. When attempting to read the plain HTTP request body resp.Body, the function will read in the
incoming payload and attempt to assign it to the resp variable. This results in the entire response body

Goproxy & Smokescreen Prone To DoS

Vendor Stripe

Severity Low

Vulnerability Class Denial of Service (DoS)

Components • github.com/stripe/goproxy
• github.com/elazarl/goproxy
• github.com/stripe/smokescreen

Status Fixed for:
• github.com/stripe/smokescreen
• github.com/stripe/goproxy

Still unresolved for:
• github.com/elazarl/goproxy

CVE N/A

Credits Lorenzo Stella

 https://github.com/stripe/smokescreen, the smokescreen_proxy_url is hardcoded to http://1

localhost:4750.

 of WWW.DOYENSEC.COM2 5

http://www.doyensec.com
https://github.com/stripe/goproxy
https://github.com/elazarl/goproxy
https://github.com/stripe/smokescreen
https://github.com/stripe/smokescreen
https://github.com/stripe/goproxy
https://github.com/elazarl/goproxy
https://github.com/stripe/smokescreen

GoProxy & Smokescreen Security Advisory

being loaded into memory from a remote network request. This is particularly dangerous since some of
the requested hosts can be selected and controlled by untrusted users. An attacker could abuse this
implementation to load large chunks of content into the server's memory, causing an Out-Of-Memory
(OOM) error condition (and potentially the consequent forceful restart of the container/service).

Technical Description

The following function appears to read the response insecurely:

• NewConnectDialToProxyWithHandler (github.com/stripe/goproxy/https.go:388)
• Referenced by NewConnectDialToProxy (github.com/stripe/goproxy/https.go:384)

• Referenced by dialerFromEnv (github.com/stripe/goproxy/https.go:373)
• Referenced by NewProxyHttpServer (github.com/stripe/goproxy/proxy.go:180). This

creates and returns a proxy server, which is used by Smokescreen (smokescreen/
smokescreen.go:399) to provide the proxy functionality.

func (proxy *ProxyHttpServer) NewConnectDialToProxyWithHandler(https_proxy
string, connectReqHandler func(req *http.Request)) func(network, addr string)
(net.Conn, error) {
	u, err := url.Parse(https_proxy)
	if err != nil {
		 return nil
	}
	if u.Scheme == "" || u.Scheme == "http" {
		 if strings.IndexRune(u.Host, ':') == -1 {
		 	 u.Host += ":80"
		 }
		 return func(network, addr string) (net.Conn, error) {
		 	 connectReq := &http.Request{
		 	 	 Method: "CONNECT",
		 	 	 URL: &url.URL{Opaque: addr},
		 	 	 Host: addr,
		 	 	 Header: make(http.Header),
		 	 }
		 	 if connectReqHandler != nil {
		 	 	 connectReqHandler(connectReq)
		 	 }
		 	 c, err := proxy.dial(network, u.Host)
		 	 if err != nil {
		 	 	 return nil, err
		 	 }
		 	 connectReq.Write(c)
		 	 // Read response.
		 	 // Okay to use and discard buffered reader here, because
		 	 // TLS server will not speak until spoken to.
		 	 br := bufio.NewReader(c)
		 	 resp, err := http.ReadResponse(br, connectReq)
		 	 if err != nil {
		 	 	 c.Close()
		 	 	 return nil, err
		 	 }
		 	 defer resp.Body.Close()
		 	 if resp.StatusCode != 200 {
		 	 	 resp, err := ioutil.ReadAll(resp.Body)
		 	 	 if err != nil {
		 	 	 	 return nil, err
		 	 	 }
		 	 	 c.Close()

 of WWW.DOYENSEC.COM3 5

http://www.doyensec.com

GoProxy & Smokescreen Security Advisory

		 	 	 return nil, errors.New("proxy refused connection" +
string(resp))
		 	 }
		 	 return c, nil
		 }
	}

 ...

	return nil
}

Reproduction Steps
It should be possible to trigger multiple plain HTTP requests from different webhooks and return very
large response bodies at the same time to crash the proxy.

Impact
Depending on the supervisor's restart policy set up on the machine, the process using Goproxy directly or
as a sub-dependency (Smokescreen) could crash or be killed, leading to a considerable downtime of the
service in case of a prolonged attack.

Complexity
Low. An attacker only needs to fire multiple HTTP webhooks to a controlled endpoint, returning very large
request bodies.

Remediation

While all the Stripe-owned libraries have released an update to address the issue, some sinks in elazarl/
goproxy remain unfixed. The mitigation was achieved by avoid loading arbitrary data into memory
regardless of the size and limiting the size of a valid response while returning an error closing the
connection when it consumes a substantial amount of memory.

The io.LimitReader() was used, through which it is possible to specify the requested maximum 2

amount of bytes to read, e.g.:

limited := io.LimitReader(fz, 40*1024*1024)
s, err := ioutil.ReadAll(limited)

The io.Reader returned by io.LimitReader() will report io.EOF when the returned data is more than
40 MB . More information on the vulnerability can be found at: 3

• "Be careful with ioutil.ReadAll in Golang", Haisum Bhatti
https://haisum.github.io/2017/09/11/golang-ioutil-readall/

 https://golang.org/pkg/io/#LimitedReader 2

 https://stackoverflow.com/questions/56629115/how-to-protect-service-from-gzip-bomb 3

 of WWW.DOYENSEC.COM4 5

https://golang.org/pkg/io/#LimitedReader
http://www.doyensec.com
https://stackoverflow.com/questions/56629115/how-to-protect-service-from-gzip-bomb
https://github.com/elazarl/goproxy
https://github.com/elazarl/goproxy
https://haisum.github.io/2017/09/11/golang-ioutil-readall/

GoProxy & Smokescreen Security Advisory

Disclosure Timeline

03/14/2022 Disclosure to elazar/goproxy maintainer (Elazar Leibovich, <elazarl@gmail.com>),
stripe/goproxy & stripe/smokescreen maintainers (Stripe Security Team
<security@stripe.com>)

05/8/2022 Fix for stripe/goproxy (39ea38205)

05/8/2022 Dependency bump in stripe/smokescreen (dbb816b6) of stripe/goproxy

08/16/2022 Advisory released by Doyensec

 of WWW.DOYENSEC.COM5 5

http://www.doyensec.com
mailto:elazarl@gmail.com
mailto:security@stripe.com
https://github.com/stripe/goproxy/commit/39ea38205f291c7a7c298bef7a02095c86173f5d
https://github.com/stripe/smokescreen/commit/dbb816b62b790432414db7cafbb4583d5092c601

