
CVE Report

 of WWW.DOYENSEC.COM1 1

Security Advisory

TypeORM
Prototype Pollution Leading To SQL Injection

Created by Norbert Szetei, Viktor Chuchurski
09/21/2022

 WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com

Security Advisory

Overview

This document summarizes the results of a vulnerability research activity in the
TypeORM Object-relational mapping tool used by our customer as a third-party library.

We have identified a critical vulnerability which allows to pollute a parameter used to
compose SQL queries. An attacker can easily exploit the finding as a SQL injection or
Denial of Service.

About Us

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.

Copyright 2022. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not
altered except by reformatting it, and that due credit is given. Permission is explicitly
given for insertion in vulnerability databases and similar, provided that due credit is
given. The information in the advisory is believed to be accurate at the time of
publishing based on currently available information, and it is provided as-is, as a free
service to the community by Doyensec LLC. There are no warranties with regard to this
information, and Doyensec LLC does not accept any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information.

 of WWW.DOYENSEC.COM1 4

http://www.doyensec.com

Security Advisory

Summary

The baseline expectation for any ORM is to avoid the possibility of SQL injection and to
ensure that all the SQL queries are safely passed to the database. Since TypeORM is
one of the most popular ORM solutions, currently having 960,405 weekly downloads on
npmjs, guaranteeing its safety by sanitizing all potentially malicious user-supplied input
is crucial.

Versions older than 0.2.24 were affected by a critical severity vulnerability, making it
possible to inject directly into SQL queries. Successful exploitation of a SQL injection
vulnerability can lead to the disclosure or modification of sensitive information to
unauthorized users, compromising the confidentiality of the system.

Moreover, exploitation of the finding using incorrect SQL syntax leads to denial of
service, affecting the user experience of its users and the general availability of the
system.

Functions which internally called mergeDeep, such as connection.manager.save,
were affected by prototype pollution. This allowed changing properties of different
functions, resulting in a SQL injection.

Due to code refactoring, the issue was reintroduced approximately one year after the
initial fix.

SQL Injection / Denial of Service Via Prototype Pollution

Vendor TypeORM

Severity Critical

Vulnerability Class Injection Flaws (SQL, XML, Command, Path, etc)

Component TypeORM Library, affected versions 0.2.35 - 0.3.9

Status Closed

CVE CVE-2022-36531

Credits Norbert Szetei, Viktor Chuchurski

 of WWW.DOYENSEC.COM2 4

https://www.npmjs.com/package/typeorm
https://hackerone.com/reports/869574
http://www.doyensec.com

Security Advisory

Technical Description

The bug was fixed in release 0.2.25 by ensuring that the user-supplied property with the
prototype keyword __proto__ is not processed:

$ git clone https://github.com/typeorm/typeorm
$ cd typeorm

$ git diff 0.2.24 0.2.25 src/util/OrmUtils.ts
[.. SNIP ..]
- if (value instanceof Promise)
 if (key === "__proto__" || value instanceof Promise)
[.. SNIP ..]

However, the refactoring of the code from the release 0.2.34 to 0.2.35 reintroduced the
same bug by removing the __proto__ check:

$ git diff 0.2.34 0.2.35 src/util/OrmUtils.ts
 static mergeDeep(target: any, ...sources: any[]): any {
- if (!sources.length) return target;
- const source = sources.shift();
-
- if (this.isObject(target) && this.isObject(source)) {
- for (const key in source) {
- const value = source[key];
- if (key === "__proto__" || value instanceof Promise)
- continue;

The reproduction steps are the same as for the previously reported vulnerability, based
on the example code https://github.com/typeorm/typescript-example.

Additionally, if we add a printing statement into https://github.com/typeorm/typeorm/
blob/0659ec395298390a2ec3e39ecae1ab4764c4e41a/src/util/OrmUtils.ts#L119 to
output the "value" argument, we can dynamically confirm that the parameters are
polluted.

For instance, injecting

const post = JSON.parse(`{"text":"a","title":{"__proto__":
{"where":{"id":2,"where":null}}}}`)

causes pollution of the object with

 of WWW.DOYENSEC.COM3 4

http://www.doyensec.com
https://github.com/typeorm/typescript-example
https://github.com/typeorm/typeorm/blob/0659ec395298390a2ec3e39ecae1ab4764c4e41a/src/util/OrmUtils.ts#L119
https://github.com/typeorm/typeorm/blob/0659ec395298390a2ec3e39ecae1ab4764c4e41a/src/util/OrmUtils.ts#L119
https://github.com/typeorm/typeorm/blob/0659ec395298390a2ec3e39ecae1ab4764c4e41a/src/util/OrmUtils.ts#L119

Security Advisory

{ __proto__: { where: { id: 2, where: null } } }

Consequently, only the entry with id = 2 is outputted.

Remediation

Reimplement the fix from version 0.2.25 to prevent merging objects with the prototype
pollution payload.

We strongly recommend implementing a unit test to prevent regressions.

References

• SQL Injection or Denial of Service due to a Prototype Pollution
https://hackerone.com/reports/869574

Disclosure Timeline

07/07/2022 Issue responsible disclosed to TypeORM dev team (Umed K.)
09/19/2022 TypeORM deployed a fix in TypeORM 0.3.10
09/21/2022 Advisory public release

 of WWW.DOYENSEC.COM4 4

https://hackerone.com/reports/869574
https://github.com/typeorm/typeorm/commit/e3aac270319006069b37f574c6e41a1fcfe7c5b1
http://www.doyensec.com

	Overview
	About Us
	Summary
	Technical Description
	Remediation
	References
	Disclosure Timeline

