
Exploiting
Client-Side Path Traversal

CSRF is dead, long live CSRF
Maxence Schmitt

CONTENT
03
Abstract

04
Introduction

09
Results

13
Practical Outcome

28
Recommendations

32
Burp Suite Extension

35
Conclusion

36
References

ABSTRACT

To provide users with a safer browsing experience, the IETF proposal named

"Incrementally Better Cookies" set in motion a few important changes to address

Cross-Site Request Forgery (CSRF) and other client-side issues. Soon after,

Chrome and other major browsers implemented the recommended changes and

introduced the SameSite attribute. Security researchers may consider the

applications implementing CSRF tokens and these protections to be safe from

CSRF.

In this paper, I will cover how Client-Side Path Traversal (CSPT) can be exploited

to perform CSRF (CSPT2CSRF) even when all industry best practices for CSRF

protections are implemented. This work is the result of extensive research on

CSPT and CSRF; theoretical as well as practical aspects will be discussed,

together with a few vulnerabilities affecting major web products.

This technical whitepaper is being released together with a Burp Suite extension

to help you find and exploit CSPT2CSRF.

Keywords
Client-Side Path Traversal, CSPT, Client-Site Request Forgery, CSRF, CSPT2CSRF, JavaScript, Burp Suite Extension,

Source, Sink

INTRODUCTION

Client-Side Path Traversal (CSPT) Definition
Every security researcher should know what a path traversal is. This vulnerability gives an attacker the ability to use

a payload like ../../../../ to read data outside the intended directory. Unlike server-side path traversal attacks,

which read files from the server, client-side path traversal attacks focus on exploiting this weakness in order to

make requests to unintended API endpoints. While this class of vulnerabilities is very popular on the server side,

only a few occurrences of Client-Side Path Traversal have been widely publicized. The first reference we found was

a bug1 reported by Philippe Harewood in the Facebook bug bounty program. Since then, we only found a few

references about Client-Side Path Traversal:

➧ a tweet from Sam Curry2 back in 2021

➧ 1-click CSRF in GitLab by Johan Carlsson3

➧ CSS Injection by Medi4, nominated in the Portswigger Top 10 Web hacking techniques of 20225

➧ CSRF by Antoine Roly6

In addition to the OWASP references pertaining to Client-Side CSRF7, we also found a research paper8 on the topic

from Soheil Khodayari and Giancarlo Pellegrino.

8 https://www.usenix.org/system/files/sec21-khodayari.pdf

7

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#deali
ng-with-client-side-csrf-attacks-important

6 https://erasec.be/blog/client-side-path-manipulation/
5 https://portswigger.net/research/top-10-web-hacking-techniques-of-2022
4 https://mr-medi.github.io/research/2022/11/04/practical-client-side-path-traversal-attacks.html
3 https://gitlab.com/gitlab-org/gitlab/-/issues/365427
2 https://x.com/samwcyo/status/1437030056627523590
1 https://www.facebook.com/notes/996734990846339/

5

Description
Nowadays, it is common to have a web application architecture with a back-end API and a dynamic front end such

as React or Angular.

In this context, an attacker with control over the {USER_INPUT} value can perform a path traversal in order to route

the victim’s request to another endpoint.

An attacker can coerce a victim into executing this unexpected request. This is the starting point of a Client-Side

Path Traversal (CSPT).

A Client-Side Path Traversal can be split into two parts. The source is the trigger of the CSPT, while the sinks are

the exploitable endpoints that can be reached by this CSPT.

6

In order to understand how we can use CSPT as an attack vector, both source and sink must be defined.

Source
A source is the action that will trigger the HTTP request on behalf of the victim. We are expecting the attacker to

control an input in order to perform a CSPT. This input must be reflected in the path part of a subsequent HTTP

request in order to target unintended endpoints.

Such sources can take any form, as it is a client-side vulnerability, different types of CSPT exist:

➧ Reflected : page?id=XXXXXXXX

➧ DOM Based : page#id=XXXXXXXXX or any data accessible from DOM (e.g., path)

➧ Stored : Input read from a database

As we are expecting the front end to trigger another call, we can assume the source page to have a content type of

text/html. Sometimes triggering a CSPT can be complicated and will require user interaction. Based on our

experience, 1-click CSPT vulnerabilities are the most common type.

Sink
Because we are re-routing a legitimate API request, the attacker only has control of the path of the HTTP request.

For example:

➧ Host : if the source is hitting the api.doyensec.com back end, you will not be able to target another host.

➧ HTTP method : with a CSPT you cannot expect to change the HTTP method of the request. However, it is

totally possible to find a sink with GET, POST, PATCH, PUT or DELETEmethods.

➧ Headers : the source can add some additional headers needed for the back end (e.g., CSRF token and

authentication token).

➧ Body content : the source may include body content in the request. It cannot be controlled by the CSPT,

except if the body content is based on other user inputs.

A sink is a reachable endpoint that shares the same restrictions. It will define what an attacker can do with the

associated source. Indeed, within the same application, it is possible to find another CSPT source that will, for

example, have a different HTTP method or a different body content and therefore have a different impact.

Let’s assume that the source is sending the following JSON data:

7

{
"user_id": "<VICTIM_USER_ID>",
"org_id": "<VICTIM_ORG_ID>",
"data": ""

}

In this case, only the endpoints that accept this data will be considered as reachable sinks.

Common bypasses to this restriction

➧ If the back end is lax in accepting additional JSON parameters, any endpoints that do not require the

user_id, channel_id, or post_root_id parameters will still be executed. From our experience, most

APIs do not enforce a strict JSON schema and will still process the request even if extra parameters are

present.

➧ As we have control over the path of the request, in most cases, we will have control of the query

parameters sent by the source. In this case, we may be able to add parameters that will be read by the back

end. Note: Using these query parameters, it may be possible to override parameters defined in the body

contents.

Once all the sink’s restrictions are identified, all reachable endpoints, following these requirements, can be listed

and the impact of the CSPT can be defined. Listing all the sinks can be done manually from documentation, from

the JavaScript code or with the Burp Suite Bambda feature.

8

RESULTS

Exploiting CSPT
An attacker can coerce a victim into triggering an HTTP request on a chosen endpoint. Even if some restriction

applies (e.g., host, method, body, headers), it can be exploitable. In this whitepaper, we will focus on using CSPT to

trigger CSRF (CSPT2CSRF) .

A CSPT is rerouting legitimate HTTP requests where the front end may add the needed tokens to perform the API

calls (e.g., authentication token, CSRF token). Therefore, it can be used to bypass existing protections to prevent

CSRF attacks. If the attacker can find impactful sinks, it is possible to use CSPT as an attack vector to perform

CSRF attacks on modern browsers. For this reason, we are naming this new technique CSPT2CSRF.

Example

As an example, imagine a website managing notes. In this example, an end user can access a specific note via its

id (e.g., 1337), by visiting the following URL:

GET /notes/draft?id=1337

The front end automatically issues the following request to the API to get details of the note:

POST /api/v1/note/1337/details

Host: xxx

Authorization: Bearer <REDACTED>

{}

10

In this case, an attacker can perform a Client-Side Path Traversal to hit another API endpoint. Indeed, the CSPT

source is the following:

GET /notes/draft?id=1337/../../anotherEndpoint?

The front end reads the query parameter and makes the following request:

POST /api/v1/note/1337/../../anotherEndpoint?/details

Host: www.doyensec.com

Authorization: Bearer <REDACTED>

CSRF-Token: <REDACTED>

{}

11

An attacker can use this CSPT to force an authenticated victim to send a request to a desired endpoint.

In order to know if it is possible to exploit this vulnerability and to assess the impact, we need to identify reachable

sinks. In this example, all potential sinks must adhere to these restrictions:

➧ Host: www.doyensec.com

➧ HTTP Method: POST

➧ Headers: Authorization, CSRF-Token

➧ Body content: {}

Therefore, an attacker can use this CSPT to perform CSRF attacks on compatible sinks (CSPT2CSRF). Based on

the complexity of triggering the source and the reachable sinks, the severity of the findings vary.

Differences with standard CSRF
Some differences exist between CSPT2CSRF and standard CSRF:

➧ It is exploitable on modern browsers.

➧ The existing CSRF protections (e.g., CSRF tokens) are ineffective.

➧ The exploitation is restricted to the compatible sink, defined by the source.

➧ It is possible and common to find GET/POST/PATCH/PUT/DELETE CSRFs. Indeed, DELETE CSRF opens

new attack vectors (e.g., calling the API to remove the MFA of an administrator).

➧ It can be a 1-click CSRF (i.e., click a button/link).

➧ Multiple CSPT sources can be found in the same application, leading to different vulnerabilities, leading to

different fixes, leading to multiple bounties.

➧ Each CSPT2CSRF needs to be described (source and sink) in order to identify the complexity and the

severity of the vulnerability.

12

PRACTICAL
OUTCOME

The previous sections defined the theory about CSPT :

➧ What is a CSPT?

➧ What is a source?

➧ What is a sink?

➧ How to exploit it to trigger CSPT2CSRF?

In this section, we will present real-world vulnerabilities affecting major web platforms and products. Over the past

year, we were able to find a lot of exploitable CSPT2CSRF given that:

➧ It has been overlooked by security researchers and developers. Indeed, no control is made in the front end

to prevent CSPT.

➧ No tool exists to find CSPT and to identify exploitable sinks.

➧ CSRF protections are only based on SameSite cookies and CSRF tokens, and are therefore bypassable with

a CSPT2CSRF.

From all the CSPT2CSRF vulnerabilities we found over this year, only a small subset will be described in this paper,

to showcase different types of CSPT2CSRF on some well-known applications:

➧ A 1-click CSPT2CSRF with a POST sink in Rocket.Chat9.

➧ A standard CSPT2CSRF with a POST sink in Mattermost10.

➧ A more complicated exploit for a CSPT2CSRF with a GET sink in Mattermost.

10 https://mattermost.com/
9 https://www.rocket.chat/

14

1-click CSPT2CSRF with a POST sink
The first case study is a low severity CSPT2CSRF affecting the Rocket.Chat application. Rocket.Chat is an

open-source platform communication platform.

This CSPT2CSRF has the specificity to be a 1-click CSPT2CSRF. This issue is now fixed..

Source description

When a user visits the /marketplace/private/install?id=INJECTION&url=https://google.com page a

form is displayed to them. If the user clicks on the Install button, the front end will read the id value and will

submit a POST request to /api/apps/INJECTION.

The following code is the front-end implementation associated with this page:

https://github.com/RocketChat/Rocket.Chat/blob/6.5.8/apps/meteor/client/views/marketplace/AppInstallPage.js

const appId = useSearchParameter('id');
const queryUrl = useSearchParameter('url');
const [installing, setInstalling] = useState(false);
const endpointAddress = appId ? `/apps/${appId}` : '/apps';
const downloadApp = useEndpoint('POST', endpointAddress);

This code reads the id from the search parameters and concatenates the value to the endpoint URL. If the victim

clicks on the Install button, the request will be sent to this endpoint.

An attacker can exploit this flow in order to issue a POST HTTP request with the victim’s authorization on a chosen

endpoint. It can be performed by crafting a malicious endpointAddress using an id value such as

../../../any_endpoint.

Using this source, it is possible to trigger a one-click CSPT2CSRF on a chosen endpoint.

15

Sink description

This issue leads to a limited CSPT2CSRF given that the attacker only has control over the value of the url body

parameter sent by the POST request.

As seen above, the body sent to the CSRF endpoint is the following: 

{
"url": "https://google.com",
"downloadOnly": true

}

The back end is lax in accepting additional JSON parameters. It doesn’t implement strict JSON schema validation.

Even if an endpoint does not require the url or the downloadId JSON parameters, the request will still be

executed. The backend also does not allow the JSON parameters to be changed to GET parameters.

As a result, valid sinks for this CSPT2CSRF need to satisfy the following conditions:

➧ POST endpoint

➧ No mandatory body parameters other than url and downloadOnly

➧ Attacker is in control of the path parameters

➧ Attacker can pass additional GET parameters

A non-exhaustive list of possible sinks can be found in the following list:

➧ /api/v1/livechat/department/:id/unarchive

➧ /api/v1/livechat/department/:id/archive

➧ /api/v1/dns.resolve.txt?url=open.rocket.chat

➧ /api/v1/users.logoutOtherClients

➧ /api/v1/users.2fa.enableEmail

The following harmless POC will use the CSPT2CSRF to logout the victim:

1. The victim visits :

/marketplace/private/install?id=../../../api/v1/users.logoutOtherClients&url=htt

ps://google.com

2. The victim clicks on Install.

3. The CSPT2CSRF sends the HTTP request to the desired endpoint.

16

While we were able to demonstrate a valid CSPT2CSRF vulnerability, we consider the severity of the vulnerability to

be low due to the :

➧ complexity : the victim must be coerced into clicking a malicious link and clicking a button

➧ impact : the identified exploitable sinks are not impactful

This vulnerability is a simple example demonstrating a 1-click CSPT2CSR. However, this finding is complicated to

exploit and has a low impact. In the next section, we will see how a CSPT2CSRF can have more impact and require

less user interaction.

17

CSPT2CSRF with a POST sink in Mattermost
Mattermost is an open-source platform designed for team communication and collaboration. Mattermost allows

teams to communicate in real-time, share files, and collaborate on projects within a private and customizable

environment.

This is a concrete example of a state of the art CSPT2CSRF with a POST sink that we found in Mattermost. The
vulnerability identifier is CVE-2023-45316 and it impacts the following versions of Mattermost:

➧ <=9.2.1, <=9.1.2, <=9.0.3, <=8.1.5, <=7.8.14

This finding was fixed in these versions, respectively:

➧ 9.2.2, 9.1.3, 9.0.4, 8.1.6, 7.8.15

Source description

When a user visits this page:

/<team>/channels/<channel>?telem_action=<action>&forceRHSOpen&telem_run_id=<telem
_run_id>

The front end will read the telem_run_id and submit a POST request to:

/plugins/playbooks/api/v0/telemetry/run/<telem_run_id>

The following code is the front-end implementation associated with this page in the
mattermost-plugin-playbooks project:

https://github.com/mattermost/mattermost-plugin-playbooks/blob/v1.39.0/webapp/src/rhs_opener.ts#L54-L64
const searchParams = new URLSearchParams(url.searchParams);
if (searchParams.has('telem_action') && searchParams.has('telem_run_id')) {

// Record and remove telemetry
const action = searchParams.get('telem_action') || '';
const runId = searchParams.get('telem_run_id') || '';
telemetryEventForPlaybookRun(runId, action);
searchParams.delete('telem_action');
searchParams.delete('telem_run_id');
browserHistory.replace({pathname: url.pathname, search:

searchParams.toString()});
}

telemetryEventForPlaybookRun concatenates the playbookRunID value to the path and executes a POST
request

https://github.com/mattermost/mattermost-plugin-playbooks/blob/v1.39.0/webapp/src/client.ts#L489-L494

18

export async function telemetryEventForPlaybookRun(playbookRunID: string, action:
telemetryRunAction) {

await doFetchWithoutResponse(`${apiUrl}/telemetry/run/${playbookRunID}`, {
method: 'POST',
body: JSON.stringify({action}),

});
}

From the source code, a potential CSPT2CSRF can be identified.

To exploit this vulnerability, the payload must be set in the telem_run_id parameter. Using this source, the
attacker is able to trigger a CSPT2CSRF on a chosen endpoint.

Sink description

This issue leads to a limited CSRF given that the attacker only has control over the value of the action body
parameter (telem_action query parameter) sent by the POST request.

As seen above, the body sent to the CSRF endpoint is the following:

{
"action": "todo_overduestatus_clicked"

}

The Mattermost back-end server is lax in accepting additional JSON parameters. Even if an endpoint does not
require the action parameter, the request will still be executed.

The Mattermost back end does not allow the JSON parameters to be changed into GET parameters.

As a result, the valid sinks for this CSPT2CSRF need to satisfy the following conditions:

➧ POST endpoint

➧ No mandatory body parameters other than action

➧ Attacker is in control of the path parameters

➧ Attacker can pass additional GET parameters

Impactful sinks can be found from the documentation or using our Burp Suite extension.

Reproduction Steps

For a POC, we will perform a POST request to a harmless API endpoint : /api/v4/caches/invalidate

Prerequisites:

➧ The victim must be connected as a system admin

19

1. The victim visits the following link:

http://localhost:8065/doyensec/channels/channelname?telem_action=under_control&fo
rceRHSOpen&telem_run_id=../../../../../../api/v4/caches/invalidate

2. Observe the CSPT2CSRF with HTTP POST request issued to the desired endpoint:
api/v4/caches/invalidate.

Finding another sink to leverage for an RCE

On-premise Mattermost instances provide the capability to deploy a plugin from a URL. The definition of the

endpoint is the following and can be found here :

https://api.mattermost.com/#tag/plugins/operation/InstallPluginFromUrl

20

This endpoint is compatible with our sink because:

➧ It is a POST Request

➧ The plugin_download_url query parameter can be added using the path traversal

➧ The back end is lax on accepting extra body parameters

An attacker can use it to upload a malicious plugin and get RCE on a Mattermost server.

Note: The plugin will not be enabled by default, however another compatible sink exists to enable plugins (POST
http://your-mattermost-url.com/api/v4/plugins/{plugin_id}/enable)

Note 2: The install_from_url endpoint is not available on cloud instances and may not be enabled by default in
on-premise installations.

A non-exhaustive list of other impactful sinks can be found in the following list:

➧ /api/v4/plugins/install_from_url

➧ /api/v4/plugins/{plugin_id}/enable

➧ /api/v4/plugins/{plugin_id}/disable

➧ /api/v4/users/{user_id}/demote

➧ /api/v4/users/{user_id}/promote

➧ /api/v4/bots/{bot_user_id}/assign/{user_id}

➧ /api/v4/restart

➧ /api/v4/oauth/apps/{app_id}/regen_secret

➧ /api/v4/elasticsearch/purge_indexes

➧ /api/v4/jobs/{job_id}/cancel

21

http://your-mattermost-url.com/api/v4/plugins/%7Bplugin_id%7D/enable

CSPT2CSRF with a GET sink
Explanation
At first, it is not expected to have a CSPT2CSRF with a GET sink. Indeed, no state changing action should be
performed on a GET request.

However, if your source is sending a GET request to read some JSON data and then perform actions based on this
JSON data, this design might be exploitable:

In this example, if we can find a GET sink that returns some controlled data, we can craft a malicious JSON
response to control the POST request. Indeed, injecting the payload inside the id value will perform CSPT2CSRF
with a POST sink:

Finding such a GET sink is more common than what we were expecting. Many applications are exposing endpoints
to upload and download data on the same API and therefore compatible with the GET CSPT2CSRF.

22

By crafting a malicious JSON response, we can chain CSPT2CSRFs to find an impactful POST sink. We have found
multiple use cases of this scenario, the next section describes one example of that.

CSPT2CSRF with a GET sink in Mattermost

While auditing Mattermost we discovered another CSPT2CSRF. It impacts the same versions as the other
CSPT2CSRF. It is listed as a distinct vulnerability because the fix is not the same. The CVE-2023-6458 number was
assigned to this vulnerability.

Source description

When a user visits the /<TEAM_NAME>/channels/<CHANNEL_NAME> page, the front end will read the channel
name and try to add the user to the channel, if not already present.

This feature and associated HTTP requests can be seen in the following screenshot:

With the team doyensec and the channel channelname the following workflow is executed:

23

The following is an explanation of the workflow’s requests:

1. The user requests access to the channel channelname on the doyensec team.
2. The front end requests

/api/v4/teams/name/<team_name>/channels/name/<channel_name>
to verify the existence of the channel named channelname under the team doyensec.

3. The data associated with the channel or a 404 HTTP response code is returned, depending on
whether the channel exists or not.

4. If the channel exists (e.g., HTTP code 200), the front end verifies if the user has already joined the
channel. It reads the channel id (e.g., yd3mijddnbytuywenmuaprrswe) and makes a GET request
to /api/v4/channels/<channel_id>/members/<user_id>.

5. If the user is not present in the channel, the endpoint returns a HTTP code 404
6. The front end then adds the user with a POST request to

/api/v4/channels/<channel_id>/members

We confirmed a CSPT with a GET sink was present in the channel_name by using URL encoding:

We thought that if we were able to use it to return data that we owned, we may be able to trigger a POST request on
a desired endpoint.

To exploit this vulnerability, the payload must be set in the channel_id value, but IDs in Mattermost are generated
randomly at creation time and cannot be modified.

However, the attacker can use the /api/v4/files endpoint to upload a malicious JSON file. When requested, the
file is served as application/json.

The malicious JSON payload has to be formatted like a channel’s response data (
/api/v4/teams/name/<team_name>/channels/name/<channel_name>) with a malicious id pointing to the
target CSRF endpoint (e.g., ../caches/invalidate?)

{
"id": "../caches/invalidate?",
"type": "O",
"display_name": "fakeChannel",
"name": "fakeChannel",
"header": "",
"purpose": ""

}

The fake channel with the malicious id is accessible at /api/v4/files/<file_id>. To perform the exploit, the
attacker must force the front end to load this malicious data instead of
/api/v4/teams/name/<team_name>/channels/name/<channel_name>.

This can be performed in the web application by crafting a CSPT payload URL such as
/<team_name>/channels/%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2ffiles%2f<file_id> if shared within
Mattermost or with double-url encoding if the attack is coming from an external website.

24

If the victim clicks on the link, the workflow’s requests will be the following:

1. The front end requests:
/api/v4/teams/name/<team_name>/channels/name/%2e%2e%2f%2e%2e%2f%2e%2e%2f%2
e%2e%2ffiles%2f<file_id>. This is equal to /api/v4/files/<file_id>.

2. The fake channel data with malicious channel_id data are returned.
3. The front end believes that the channel exists and will verify if the user has already joined the

channel. It reads the malicious channel_id (e.g., ../caches/invalidate?) and makes a GET
request to:
/api/v4/channels/../caches/invalidate?/members/<user_id>. This is equivalent to a

GET request to /api/v4/caches/invalidate.
4. The GET method on this endpoint does not exist, so the back end returns an HTTP 404 code.
5. The front end tries to add the user with a POST request to

/api/v4/channels/../caches/invalidate?/members. This is equivalent to a POST request
on /api/v4/caches/invalidate. This confirms the CSRF payload has been executed.

Using this source, the attacker was able to trigger a one-click CSRF on a chosen endpoint (e.g.,
/api/v4/caches/invalidate).

As an attacker, using the file gadget, it is possible to chain two CSPT2CSRFs:

1st CSPT2CSRF:

➧ Source: The channel_name in the URL; Victim needs to click on the link to trigger the front-end routing.

➧ Sink : GET request on the API.

2nd CSPT2CSRF:

➧ Source: id from channel JSON data.

➧ Sink : POST request on the API.

POST sink description

This issue leads to a limited CSRF given that the attacker does not have control over the body sent by the POST
request.

As seen above, the body sent to the CSRF endpoint is the following:

{
"user_id": "<VICTIM_USER_ID>",
"channel_id": "<CSRF_ENDPOINT>",

25

"post_root_id": ""
}

As a result, the valid sinks for this CSPT2CSRF need to satisfy the following conditions:

➧ POST endpoint

➧ No mandatory body parameters other than user_id, channel_id, post_root_id

➧ user_id is the victim id

➧ Attackers can pass additional query parameters

So all valid sinks identified for the previous Mattermost vulnerability are also valid for this CSPT.

26

Other CSPT impacts not covered in this whitepaper

CSPT2CSRF with GET sink to exploit an XSS

The front end may expect to read data sanitized by the back end. An attacker can use a CSPT2CSRF with a GET

sink to return an XSS payload from malicious JSON data.

Chaining with an open redirect

If an open redirect is present on the sink host, you may be able to exfiltrate data and auth/CSRF tokens. The fetch

API is forwarding the headers set by the front end.

27

RECOMMENDATIONS

CSPT2CSRF Remediation
The use of a CSRF token and SameSite cookies are useless to protect against this vulnerability.

To remediate CSPT, multiple actions can be taken :

➧ The back end must enforce a JSON schema validation. Indeed, being strict on accepting JSON parameters

can considerably reduce the compatible sinks and therefore reduce the impact of such an attack.

➧ The front end must sanitize any user input against path-traversal attacks, when used as a the path

parameter.

The issue is that most API client implementations used by front-end applications don’t protect against path

traversal. For instance, in the https://github.com/OpenAPITools/openapi-generator project, used to generate API

clients for different languages, we did not find any sanitization against path traversal for string parameters.

Front-end developers are not aware of this insecure anti-pattern. This abstraction layer is hiding the fact that some

arguments can be used as path parameters. In the following example, it is not obvious that the username

parameter of the deleteUser function is sent as a path parameter and therefore needs to be sanitized against

path traversal.

https://github.com/OpenAPITools/openapi-generator/blob/master/samples/client/petstore/typescript-angular-v16

-provided-in-root/builds/default/api/user.service.ts#L319-L382

/**
* Delete user
* This can only be done by the logged in user.
* @param username The name that needs to be deleted
* @param observe set whether or not to return the data Observable as the

body, response or events. defaults to returning the body.
* @param reportProgress flag to report request and response progress.
*/
public deleteUser(username: string, observe?: 'body', reportProgress?:

boolean, options?: {httpHeaderAccept?: undefined, context?: HttpContext}):
Observable<any>;

public deleteUser(username: string, observe?: 'response', reportProgress?:
boolean, options?: {httpHeaderAccept?: undefined, context?: HttpContext}):
Observable<HttpResponse<any>>;

public deleteUser(username: string, observe?: 'events', reportProgress?:
boolean, options?: {httpHeaderAccept?: undefined, context?: HttpContext}):
Observable<HttpEvent<any>>;

29

public deleteUser(username: string, observe: any = 'body', reportProgress:
boolean = false, options?: {httpHeaderAccept?: undefined, context?:
HttpContext}): Observable<any> {

if (username === null || username === undefined) {
throw new Error('Required parameter username was null or undefined

when calling deleteUser.');
}

<... STRIPPED ...>

let localVarPath = `/user/${this.configuration.encodeParam({name: "username",
value: username, in: "path", style: "simple", explode: false, dataType: "string",
dataFormat: undefined})}`;
return this.httpClient.request<any>('delete',
`${this.configuration.basePath}${localVarPath}`,

{
context: localVarHttpContext,
responseType: <any>responseType_,
withCredentials: this.configuration.withCredentials,
headers: localVarHeaders,
observe: observe,
reportProgress: reportProgress

}
);

We believe this confusion is the reason why CSPT2CSRF vulnerabilities are so prevalent and it is the reason why we

recommend enforcing proper type verification and path traversal mitigation in the client API code.

30

Burp Suite Extension

As explained in the previous sections, different types of inputs can lead to different types of Client-Side Path

Traversal vulnerabilities (e.g., DOM based, reflected, stored), so it may not be easy to use off-the-shelf tools to find

them. For this reason, we built a tool to help security researchers and developers to identify potential CSPT2CSRF

vulnerabilities.

CSPT Burp Suite Extension

CSPT is an open-source Burp Suite extension to find and exploit Client-Side Path Traversal. It is available at

https://github.com/doyensec/CSPTBurpExtension

The CSPT Burp extension implements different tools to identify potential sources and potential sinks.

➧ The CSPT tab that will read the proxy history to find the reflection of query params in the URL path.

➧ The False Positive List tab to define patterns that must be excluded from the search.

➧ A passive scanner that will look for a canary value in the path of a request.

➧ A feature to list all exploitable sinks based on the host request and an HTTP method.

Using this extension, the process to find CSPT2CSRF is the following:

Find a source:

➧ Crawl the application to fill your proxy history with requests.

➧ Scan for CSPT using the Burp extension.

➧ Confirm the source is valid with the canary token value.

Find an impactful sink:

32

https://github.com/doyensec/CSPTBurpExtension

➧ From a valid sink, identify all sinks having the same restrictions. It can be done with source code review,

API documentation and by filtering proxy requests using the Burp Suite Bambda feature.

The tool’s limitations:

➧ No DOM based or stored sources will be identified unless you used the canary token as input data.

➧ Some front ends implement client-side routing. This kind of routing does not send HTTP requests to Burp

and therefore will not be caught by our extension, unless you used the canary token.

Source code review
Of course, a manual review of the front-end source code can also help identify an input value used in the path

parameter of an API call. Reading the API documentation can give you some leads as to whether some of the APIs

are using path parameters or not.

Semgrep rules can also be a good tool to facilitate this analysis. The rules must be cross-file to identify values used

between source and sink. It needs to take care of the different front-end framework implementations to identify the

different sources (e.g., query parameters, URI fragment) and the different sinks (axios, fetch, XHR calls).

33

CONCLUSION

Conclusion
Thanks to CSPT2CSRF, CSRF is still alive.

We introduced a new technique to exploit CSRF by leveraging CSPT with a GET sink. Using malicious uploaded data

as a gadget to perform a second-order CSRF is very common. Most of the time we were, at least, able to execute a

1-click CSPT2CSRF. In this technical whitepaper, we formalized the issue and also released a tool to facilitate the

discovery of such vulnerabilities. We highly encourage the security community to look for CSPT2CSRF and we hope

our research will help researchers to find and exploit it.

While CSPT2CSRF introduces new restrictions and impacts, an application can have multiple CSPT sources and

therefore can lead to multiple vulnerabilities.

During the past year, we hunted for CSPT2CSRF while performing numerous assessments and identified several

vulnerabilities even in well-known targets. This suggests that the vulnerability has been overlooked for years.

Authors
Maxence Schmitt

Reviewers
Luca Carettoni
John Villamil
Anthony Trummer

Mattermost and Rocket.Chat Team
➧ For the collaboration and authorization to use these vulnerabilities as examples.

35

mailto:maxence@doyensec.com
mailto:luca@doyensec.com
mailto:john@doyensec.com
mailto:anthony@doyensec.com

REFERENCES

External Resources
➧ CSPT Burp Extension :

https://github.com/doyensec/CSPTBurpExtension

➧ Portswigger top 10 2022 stating that CSPT it is an overlook vulnerability :

https://portswigger.net/research/top-10-web-hacking-techniques-of-2022

➧ Using CSPT vulnerability to include external CSS:

https://mr-medi.github.io/research/2022/11/04/practical-client-side-path-traversal-attacks.html

➧ Using CSPT to exploit a CSRF:

https://erasec.be/blog/client-side-path-manipulation/

➧ CSPT leading to 1-click CSRF in Gitlab:

https://gitlab.com/gitlab-org/gitlab/-/issues/365427

➧ A tweet from Sam Curry about CSPT to CSRF was found on X back in 2021:

https://x.com/samwcyo/status/1437030056627523590?lang=fr

➧ Research paper from Soheil Khodayari and Giancarlo Pellegrino:

https://www.usenix.org/system/files/sec21-khodayari.pdf

➧ OWASP references about Client-Side CSRF:

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat

_Sheet.html#dealing-with-client-side-csrf-attacks-important

➧ CSRF by Antoine Roly:

https://erasec.be/blog/client-side-path-manipulation/

37

https://github.com/doyensec/CSPTBurpExtension
https://portswigger.net/research/top-10-web-hacking-techniques-of-2022
https://mr-medi.github.io/research/2022/11/04/practical-client-side-path-traversal-attacks.html
https://erasec.be/blog/client-side-path-manipulation/
https://gitlab.com/gitlab-org/gitlab/-/issues/365427
https://x.com/samwcyo/status/1437030056627523590?lang=fr

ABOUT
DOYENSEC

ABOUT DOYENSEC
Doyensec was founded in 2017 by John and Luca who are its only stakeholders. The company exists to
further the passion and focus of its creators. We aim to provide research-driven application security,
enabling trust in our client’s products and evolving the resilience of the digital ecosystem.

With offices in the US and Europe, Doyensec has access to a unique talent pool of security experts
capable of providing worldwide consulting services.
We keep a small dedicated client base and expect to develop long term working relationships with the
projects and people involved. We will find bugs, but we know that is just the first step in the process. At
any stage of your security maturity, you can rely on Doyensec to solve your unique application security
needs.

We value and rely on the following principles:

● Passion. We believe quality comes from passion and care. We love what we do, and
continuously work on mastering our craft. Every engagement is finely executed with
dedication and attention to details.

● Expertise. Our team has decades of experience in application security. We are industry
leaders in penetration testing, reverse engineering, and source code review. Doyensec
researchers have discovered numerous vulnerabilities in widely-deployed products,
secured fortune 500 enterprises, advised startups and worked with tech companies to
eradicate security flaws.

● Focus. Security craftsmanship is all about individual attention and delivering tailored
security services and products. We concentrate on application security and do fewer
things, better.

● Research. The fast changing landscape of technologies and security threats requires
constant innovation. We are dedicated to providing research-driven application security
and therefore invest 25% of our time in building security testing tools, discovering new
attack techniques and developing countermeasures.

39

