Web Security in 2022

HELLO!

| am Luca
¥ AppSec since 2004

Doyensec Co-founder

Former Lead of AppSec (LinkedIn),
Senior Security Researcher (Matasano), ...

You can find me at
luca@doyensec.com
@lucacarettoni

mailto:luca@doyensec.com

|

We work at the intersection of software
development and offensive engineering
to help companies craft secure code.

doyensec.com/research

Best Bugs @Doyensec

l .u‘.!QOQOo'c0-Q l.-oooo.
i LT SIS,
‘BT

) @0 ed sesnsnnnninned

e S

. uw"nl....nn"n —

N P —
R L L S e
- U‘o'i-
.‘t';‘
R L
Tar- rere
S R Rt L D
SR L

S L)
S L

S D e T T
R)
s -
» « R

S Gsenener. e
N » SR

“, u.mﬁm,w

L.

=

WHAT HAPPENS IN BESTBUGS

imgflip.com

INSTRUCTIONS FOR USE

Web Security Centric

Based on web tech, but not necessarily web app

Tech / FinTech Centric

We mainly work within these industries

Modern frameworks and languages only

| definitely spend too much time on Js/Ts

Credit where credit's due

Not all bugs are mine. Thanks team!

Statistically non-significant
Not that the OWASP Top10is...

Omitting well understood new classes

SSRF, HTTP request smuggling and other
@albinowax tricks are removed for brevity.
They're indeed new interesting attacks

"A computer is a state machine.
Threads are for people who can't
program state machines”

STATE MACHINES

A state machine is a mathematical abstraction used
to design algorithms

A state machine reads a set of inputs and changes to
a different state based on those inputs

They're everywhere, including WebRTC and login flows

https://bugs.chromium.org/p/project-zero/issues/
detail?id=1943

https://bugs.chromium.org/p/project-zero/issues/detail?id=1943
https://bugs.chromium.org/p/project-zero/issues/detail?id=1943

MY TINY STATE MACHINE BUG

Unauthenticated Authenticated w/o 2FA Fully Authenticated
Credentials 2FA OTP
. |
) 3 Y4
) 3 Y 4
‘. Ry
‘. ','
A ’
) J L
5 o . . -
?

LOGIN (Credentials)

try {
const account = await login(kClient, email, password, req.ipAddress);

const result = {
login:
accountId: account.id

¥
}i

// 1f MFA is required, redirect to the two factor page
if (account.two_factor_secret) A
return res.render(' login', {
uid,
details: prompt.details,
params: {
.. .params,
...defaultParams,
gaPageTracker: urls.INTERACTION_LOGIN,

LOGIN (2FA OTP)

// verify two factor token if present in the POST request
if (twoFactorToken)
// get user from db
const account = await getUserByEmail(email);

// verify two factor token
const twoFactorService = new TwoFactorService();

if (!'twoFactorService.verify2faToken(account, twoFactorToken)) {
// 1f invalid, return to login page to try again

10

THE IRONY OF SECURITY (and LIFE)

No rate limiting
Authentication bypass
Affects 2FA-enabled accounts only

Who would have guessed?

”
Mierazn oz che gy s © 973, 210, A
a. 2 stat i ¢ e 122 o, &2
= iy X)
et g e lingugyr At ”":7'%69
e gy

Prpriti
4. s
) ot momacios s 1t o

5 € 1,
/"Je,

lan Beer

12

CVE-2021-26437
VScode .ipynb XSS

August 2021, Justin Steven releases https://
github.com/justinsteven/advisories/blob/master/
2021 _vscode_ipynb_xss_arbitrary_file_read.md

{
"cells": |

{
‘cell_type": "code",
‘execution_count”: null,
"source": [],
"outputs": |
{
‘output_type": "display_data’,
"data”: {"text/markdown": ""}
}

https://github.com/justinsteven/advisories/blob/master/2021_vscode_ipynb_xss_arbitrary_file_read.md
https://github.com/justinsteven/advisories/blob/master/2021_vscode_ipynb_xss_arbitrary_file_read.md
https://github.com/justinsteven/advisories/blob/master/2021_vscode_ipynb_xss_arbitrary_file_read.md

Take control of the DOM

Hijack the navigation flow,
Cross-Site Scripting,
Protocol Handlers,
AuxClick,
Man-in-The-Middle,
Drag & Drop

99% of ElectronJS EXPLOITs

Bypass isolation

nodelntegration bypasses,
webview tricks, ...

15

Execute code

Leverage Node.js APlIs

VScode DESIGN

BrowserWindow nodelntegration:on

vscode-file://vscode-app/Applications/Visual%20Studio%20Code.app/Conten
ts/Resources/app/out/vs/code/electron-browser/workbench/workbench.html

Webview - Iframe nodelntegration:off

vscode-webview://df4d9d44-3886-492c-af70-1b1495376fff/index.html
?id=df4d9d44-3886-492c-af70-1b1495376fff&swVersion=2&extension
|ld=&platform=electron&vscode-resource-base-authority=vscode-reso
urce.vscode-webview.net&purpose=notebookRenderer

Webview - lframe nodelntegration:off

vscode-webview://df4d9d44-3886-492c-af70-1b1495376fff/fake.ht
ml?id=df4d9d44-3886-492c-af70-1b1495376fff

16

IFRAME SANDBOX

By default, sandbox makes the browser treat the iframe
as if it was coming from another origin

Thanks to the allow-same-origin attribute, this
limitation is lifted

Assuming content from the vscode-file://vscode-
app/origin, we could execute something like:

top.require('child_process').exec('1id"');

CVE-2021-43908

Details disclosed at the latest BlackHat USA 2022

https://i.blackhat.com/USA-22/Thursday/US-22-Purani-
ElectroVolt-Pwning-Popular-Desktop-Apps.pdf

vscode-file://vscode-app/Applications/Visual Studio

Code.app/Contents/Resources/app/..%2F. . %2F . .%2F ..
W2F . %2F . %2F . %2F . %2F . %2F . %2F . . %2F . .%2F/file.html

https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-Pwning-Popular-Desktop-Apps.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-Purani-ElectroVolt-Pwning-Popular-Desktop-Apps.pdf

POSTMESSAGE EVENTS

Similarly to CVE-2021-43908, we can leverage a
postMessage’'s reply to leak the path of the image
files loaded

[O S S £ ve O
'O Debugger paused

v Threads

Main
service-worker.js #194 (()=>A(t,e,r))

L » index.html paused
editorWorkerService

. » Watch

" v Breakpoints

No breakpoints

. v Scope

" vlLocal
vevent: MessageEvent
bubbles: false
cancelBubble: false
cancelable: false
composed: false
» currentTarget: Window {@: Window, 1: Window, window: Window, self: Window, document: document, name: "5cd@a9@c-bcfl-4ede-aefd4-a3e22c11076a", location: Location, ..}
v data:
vargs:
confirmBeforeClose: undefined
contents: "\n\t\t<html lang=\"en\">\n\t\t\t<head>\n\t\t\t\t<meta charset=\"UTF-8\">\n\t\t\t\t<base hrefg\"https://file%2B.vscode-resource.vscode-webview.net/Users/ikki/Research/0VE-20210809-0001/malicio}
cspSource: "https://*.vscode-webview.net"
» options: {allowMultipleAPIAcquire: true, allowScripts: true, localResourceRoots: Array(5)}
state: undefined
» _proto_ : Object
channel: "content"
» _proto_: Object
defaultPrevented: false
eventPhase: 2
isTrusted: true
lastEventId: ""
origin: "vscode-file://vscode-app"

19

Eric J. Dickey

20

LET'S START FROM THE END

https://github.com/signalapp/Signal-Desktop/commit/9d88abdb9006527bd7d1e3dea5443646af954875 (Aug 6, 2019)

X @@ -83,7 +83,7 @@ async function checkDownloadAndInstall(
83 83 +
84 84
85 85 const publicKey = hexToBinary(getFromConfig('updatesPublicKey'));
86 - const verified = verifySignature(updateFilePath, version, publicKey);
86 + const verified = await verifySignature(updateFilePath, version, publicKey);
87 87 if (!verified) {
88 88 // Note: We don't delete the cache here, because we don't want to continually
89 89 // re—download the broken release. We will download it only once per launch.
: @@ -164,7 +164,7 @@ async function verifyAndInstall(
164 164 logger: LoggerType
165 165) {
166 166 const publicKey = hexToBinary(getFromConfig('updatesPublicKey'));
167 — const verified = verifySignature(updateFilePath, newVersion, publicKey);
167 + const verified = await verifySignature(updateFilePath, newVersion, publicKey);
168 168 if (lverified) {
169 169 throw new Error(
170 170 "Downloaded update did not pass signature verification (version: '${newVersion}'; fileName: '${fileName}')"
4

21

https://github.com/signalapp/Signal-Desktop/commit/9d88abdb9006527bd7d1e3dea5443646af954875

THEN, WHAT?

Verification mechanism for software updates is based on a
lightweight Ed25519 public-key signature verification

The function in use is defined as
export async function verifySignature(...)

The code does not wait for the promise’s return value

Definitely not something you expect in a signature verification routine

“Cloud is about how you do computing,
not where you do computing”

AWS SDK CREDENTIALS

When the AWS client is initialized without directly providing the
credential’'s source, a credential provider chain is used

For Golang:
Environment variables
Shared credentials file

If the application uses ECS task definition or RunTask API operation,
|AM role for tasks

If the application is running on an Amazon EC2 instance, |IAM role
for Amazon EC2

“Import Data From S3”

if err = nil {
if err, awsError := err.(awserr.Error); awsError {
aws_config.credentials = nil
getObjectsList(session_init, aws_config, bucket_name)

;

More details in https://blog.doyensec.com/2022/10/18/cloudsectidbit-
dataimport.html

Credits to Mohamed Ouad, Francesco Lacerenza

https://blog.doyensec.com/2022/10/18/cloudsectidbit-dataimport.html
https://blog.doyensec.com/2022/10/18/cloudsectidbit-dataimport.html
https://blog.doyensec.com/2022/10/18/cloudsectidbit-dataimport.html

“There's so much pollution in theair Javascript
now that if it weren't for our lurgs apps
there'd be no place to put it all”

Prototype Pollution

JavaScript is prototype-based
Object inheritance gives flexibility, but it's dangerous

let user = {name: "luca"}
console.log(user.toString())

user.__proto__.toString = ()=>{alert(1)}
console.log(user.toString())

Prototype Pollution in
TypeORM 0.2.35 - 0.3.9

TypeORM is a JS/TS ORM

Deep Object.assign is implemented in mergeDeep()

https://github.com/typeorm/typeorm/blob/
e92c/43tb541c404658fcaf2254861b6aa63bd98/src/

util/OrmuUtils.ts#L 66

A SQL injection can be triggered with the following
payload

const post = JSON.parse({"text":"a", "title":{"__proto__":
{"where" :{"name" : "foobar", "where" :null}}}})

https://github.com/typeorm/typeorm/blob/e92c743fb54fc404658fcaf2254861b6aa63bd98/src/util/OrmUtils.ts#L66
https://github.com/typeorm/typeorm/blob/e92c743fb54fc404658fcaf2254861b6aa63bd98/src/util/OrmUtils.ts#L66
https://github.com/typeorm/typeorm/blob/e92c743fb54fc404658fcaf2254861b6aa63bd98/src/util/OrmUtils.ts#L66

Prototype Pollution in
TypeORM 0.2.35 - 0.3.9

More details in https://doyensec.com/resources/
Doyensec_Advisory_TypeORM_Q32022.pdf

Credits to Norbert Szetei, Viktor Chuchurski
Original discovery: Francesco Soncina (phra)

https://doyensec.com/resources/Doyensec_Advisory_TypeORM_Q32022.pdf
https://doyensec.com/resources/Doyensec_Advisory_TypeORM_Q32022.pdf
https://doyensec.com/resources/Doyensec_Advisory_TypeORM_Q32022.pdf

Meja

32

PREVENTING OPEN-REDIRECTS

The application implements validation to prevent
open redirects

const sanitizeReturnTo = (returnTo: string) => {
if (!'returnTo) return;

const { protocol, host } = url.parse(returnTo);
if (protocol !'== "https:" || host !== "app.secureapp.com”) return;

return returnlo;

Fi

FE / BE Mismatch

NodeJS JavaScript

> url.parse("https://app.secureapp.com%60x .doyensec.com™) [O Elements ~ Console Recorder 4 S
Url { Y © [topY @ | Filter
p{fytECCﬂ'{t > new URL("https://app.secureapp.com%60x.doyensec.com")
= ?? 65'11'”Je’ URL {origin: "https://app.secureapp.com’b60x.doyensec.c
Sumnenu Ll yensec.com', ..} €3
host:
puUrc. ruLtL,
hostname: ' ' :
href: "https://app.secureapp.com%60x.doyensec.com/"
hash: null, PR o "
origin: "https://app.secureapp.com%s60x.doyensec.com
search: null, password: ""
query: null, pathname: "/"
pathname: oort: "
path: protocol: "https:"
href search: ""

» searchParams: URLSearchParams {}
username: ""

»

+
Tips&Tricks

o

Log4Shell
ProxyLogon
Pwn20wn Targets

Web security is no longer a 2nd class citizen

36

Trends

A Safe Internet Job Stability

/ \

1 CSRF is almost dead 1 HTTP Splitting
1 Traditional XSS is slowly disappearing -~ HTTP Caching

L. : 1 SSRF
1 Injection bugs are getting rare

1 Prototype Pollution
1 Secure by default frameworks 1 Parsing mismatch

1 A lot more investments 1 AP| Path Traversal

1 Incorrect use of APIs, Functions, Cloud
Services

1 Business logic bugs
1 Vulns Chaining

37

For Auditors

READ THE MANUAL NEW STUFF /3 SPARSE or DENSE

You can find bugs, even @ Look out for new @ Look for the same bug in

before you open Burp Suite technologies and trends. different places. Look for
Never stop learning different bugs in the same

place.

COMPLEXITY o, » INTERCONNECTION MISMATCH

Complexity is the enemy of o’?" Look at how systems f Parsing (and other

security. Laser focus on interconnect. The mismatch-prone

large and complex code and boundaries are the attack functionalities) have always

systems surface been a good source of bugs

38

For Developers

READ THE MANUAL

Secure by default.
Yet, secure coding practices
are still required

NEW STUFF

@ New doesn't always mean
better. Also, different
paradigms

COMPLEXITY o » INTERCONNECTION

Complexity is the enemy of 0’?" Integration tests anyone?!
security. KISS

39

/3 SPARSE or DENSE

@ Don't allow the intern to
push production code

MISMATCH

ﬁ Whenever possible
minimize technologies and

implementation of the same
business logic

THANKS!

Any guestions?

You can find me at
luca@doyensec.com
@lucacarettoni

40

mailto:luca@doyensec.com

