
CVE Report

 

 � of � WWW.DOYENSEC.COM1 1

Electron Security Checklist
A guide for developers and auditors

Created by Luca Carettoni - @lucacarettoni

 WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com
http://www.doyensec.com

Table of Contents

Revision History 1
Contacts 1
Abstract 2
About Doyensec 2
Introduction 3
Electron Security Checklist 5
Disable nodeIntegration for untrusted origins 5
Use sandbox for untrusted origins 7
Review the use of command line arguments 8
Review the use of preload scripts 9
Do not use disablewebsecurity 11
Do not allow insecure HTTP connections 12
Do not use Chromium’s experimental features 14
Limit navigation flows to untrusted origins 15
Use setPermissionRequestHandler for untrusted origins 16
Do not use insertCSS, executeJavaScript or eval with user-supplied content 17
Do not allow popups in webview 18
Review the use of custom protocol handlers 19
Review the use of openExternal 20
Bibliography 21

Electron Security Checklist

 
Revision History 

Contacts
 

 

Version Date Description Author

0.1 June, 26 2017 First internal draft Luca Carettoni

0.2 July, 14 2017 First release to peers Luca Carettoni

0.3 July, 16 2017 BlackHat white paper release Luca Carettoni

0.4 July, 31 2017 Minor changes. Typo fixes Luca Carettoni

Company Name Email

Doyensec, LLC. Luca Carettoni luca@doyensec.com

 � of � WWW.DOYENSEC.COM1 21

mailto:luca@doyensec.com
http://www.doyensec.com

Electron Security Checklist

 
Abstract

Despite all predictions, native Desktop applications are back. After years porting stand-
alone apps to the web, we are witnessing an inverse trend. Many companies have
started providing native desktop software built using the same technologies as their
web counterparts. In this trend, Github's Electron has become a popular framework to
build cross-platform desktop apps with JavaScript, HTML, and CSS. While it seems to
be easy, embedding a web application in a self-contained web environment (Chromium,
Node.Js) leads to new security challenges.

This document introduces a checklist of security anti-patterns and must-have features
to illustrate misconfigurations and vulnerabilities in Electron-based applications.
Software developers and security auditors can benefit from this document as it provides
a concise, yet comprehensive, summary of potential weaknesses and implementation
bugs when developing applications using Electron.

As part of our study of Electron security, we have implemented a tool (Electronegativity
- available on Doyensec’s Github https://github.com/doyensec/electronegativity) that
checks for the security anti-patterns discussed in this document.

About Doyensec

Doyensec is an independent security research and development company focused on
vulnerability discovery and remediation. We work at the intersection of software
development and offensive engineering to help companies craft secure code.  

Research is one of our founding principles and we invest heavily in it. By discovering
new vulnerabilities and attack techniques, we constantly improve our capabilities and
contribute to secure the applications we all use.
 
Copyright 2017. Doyensec LLC. All rights reserved.  

 � of � WWW.DOYENSEC.COM2 21

https://electron.atom.io/
https://github.com/doyensec/electronegativity
http://www.doyensec.com

Electron Security Checklist

“Several experts have told me in all seriousness that browser security models are now
so complex that I should not even write a section about this”

 
Threat Modeling - Adam Shostack  

Introduction

Web security is complicated. Modern browsers are enforcing numerous security
mechanisms to ensure isolation between sites, facilitate web security protections and
preventing untrusted remote content to compromise the security of the host. When
working with Electron, things get even more complicated. While Electron is based on
Chromium’s Content module, it is not a browser. Since it facilitates the construction of
complex desktop applications, Electron gives the developer a lot of power. In fact,
thanks to the integration with Node.js, JavaScript can access operating system
primitives to take full advantage of native desktop mechanisms. As we know, with
great power comes great responsibility.

We assume that the reader is already familiar with Electron and its inner-working
mechanisms, as we will be discussing security-relevant topics without providing any
introduction to the framework. If you are not familiar with Electron’s core philosophy and
APIs, please review the Electron online documentation. There is a growing community
of Electron developers that have produced many excellent tutorials for beginners.

During our research, we have extensively studied the security of the Electron framework
itself and reported vulnerabilities to the core team. However, in this document, we will
be focusing on application-level design and implementation flaws only.

 � of � WWW.DOYENSEC.COM3 21

https://electron.atom.io/docs/
http://www.doyensec.com

Electron Security Checklist

  
As a software developer, it is important to remember that the security of your
application is the result of the overall security of the framework foundation
(Libchromiumcontent, Node.js), Electron itself, all dependencies (NPM packages) and
your code. As such, it is your responsibility to follow a few important best practices:

• Keep your application in sync with the latest Electron framework release
• When releasing your product, you’re also shipping a bundle composed of

Electron, Chromium shared library and Node.js. Vulnerabilities affecting these
components may impact the security of your application. By updating
Electron to the latest version, you ensure that critical vulnerabilities (such as
nodeIntegration bypasses) are already patched and cannot be exploited to
abuse your application 

• Evaluate your dependencies
• While NPM provides half a million reusable packages, it is your responsibility

to choose trusted 3rd-party libraries. If you use outdated libraries affected by
known vulnerabilities or rely on poorly maintained code, your application
security could be in jeopardy. Remember, OpenSource does not necessarily
mean security by default 

• Know your framework (and its limitations)
• Certain principles and security mechanisms implemented by modern

browsers are not enforced in Electron. For instance, even the latest Electron
release at the time of writing does not fully enforce the Same Origin Policy
(SOP) and still does not restrict the file:// handler from web origins, thus a
remote untrusted page can read the content of local resources without user
interaction. Adopt defense in depth mechanisms to mitigate those
deficiencies. For more details, please refer to our Black Hat 2017
“Electronegativity, A study of Electron Security” presentation 

• Adopt secure coding practices
• The first line of defense for your application is your own code. Common web

vulnerabilities, such as Cross-Site Scripting (XSS), have a higher security
impact on Electron applications hence it is highly recommend to adopt
secure software development best practices and perform security testing. 

 � of � WWW.DOYENSEC.COM4 21

https://www.blackhat.com/us-17/briefings.html%23electronegativity-a-study-of-electron-security
http://www.doyensec.com

Electron Security Checklist

 
Electron Security Checklist

Disable nodeIntegration for untrusted origins

By default, Electron renderers can use Node.js primitives. For instance, a remote
untrusted domain rendered in a browser window could invoke Node.js APIs to execute
native code on the user’s machine. Similarly, a Cross-Site Scripting (XSS) vulnerability on
a website can lead to remote code execution. To display remote content,
nodeIntegration should be disabled in the webPreferences of BrowserWindow and
webview tag.

Risk If enabled, nodeIntegration allows JavaScript to leverage Node.js primitives
and modules. This could lead to full remote system compromise if you are
rendering untrusted content.

Auditing nodeIntegration and nodeIntegrationInWorker are boolean options that can
be used to determine whether node integration is enabled.

For BrowserWindow, default is true. If the option is not present, or is set to
true/1, nodeIntegration is enabled as in the following examples:

mainWindow = new BrowserWindow({
 "webPreferences": {
 "nodeIntegration": true,
 “nodeIntegrationInWorker": 1
 }
 });

Or simply:

mainWindow = new BrowserWindow()

For webview tag, default is false. When this attribute is present, the guest
page in webview will have node integration:

<webview src=“https://doyensec.com/“ nodeintegration></webview>

When sanbox is enabled (see below), nodeintegration is disabled.

 � of � WWW.DOYENSEC.COM5 21

http://www.doyensec.com

Electron Security Checklist

Auditing Please note that it is also possible to use the will-attach-webview event to
verify (and potentially change) any attribute of webPreferences. This event is
emitted when a webview is being attached to the web content.

Since this mechanism can be used to change the webPreferences
configuration, please carefully review the implementation of the callback. At
the same time, this is a powerful mechanism to validate all settings and
ensure a secure instance of webview, as demonstrated in this
implementation:

app.on('web-contents-created', (event, contents) => {
 contents.on('will-attach-webview', (event, webPreferences, params) => {
 // Strip away preload scripts if unused
 // Alternatively, verify their location if legitimate
 delete webPreferences.preload
 delete webPreferences.preloadURL

 // Disable node integration
 webPreferences.nodeIntegration = false

 // Verify URL being loaded
 if (!params.src.startsWith('https://doyensec.com/')) {
 event.preventDefault()
 }
 })
})

 � of � WWW.DOYENSEC.COM6 21

http://www.doyensec.com

Electron Security Checklist

 
Use sandbox for untrusted origins

While nodeIntegration tackles the problem of limiting access to Node.js primitives from
a remote untrusted origin, it does not mitigate security flaws introduced by Electron’s
“glorified” APIs. In fact, Electron extends the default JavaScript APIs (E.g. window.open
returns an instance of BrowserWindowProxy) which leads to a larger attack surface (as
demonstrated by our recent nodeIntegration bypass bug, fixed in v1.6.8).

Instead, sandboxed renderers are supposed to expose default JavaScript APIs. We use
the “supposed to” form as the current implementation (at the time of writing) is
experimental and does not revert the behavior of all “glorified” APIs. If set, this option
will sandbox the renderer associated with the window, making it compatible with the
Chromium OS-level sandbox.

Additionally, a sandboxed renderer does not have a Node.js environment running (with
the exception of preload scripts) and the renderers can only make changes to the
system by delegating tasks to the main process via IPC.

While still not perfect, this option should be enabled whenever there is a need of loading
untrusted content in a browser window.

Risk Even with nodeIntegration disabled, the current implementation of Electron
does not completely mitigate all risks introduced by loading untrusted
resources. As such, it is recommended to enable sandboxing.

Auditing For BrowserWindow, sandboxing needs to be explicitly enabled:

mainWindow = new BrowserWindow({
 "webPreferences": {
 "sandbox": true
 }
 });

To enable sandboxing for all BrowserWindow instances, a command line
argument is necessary:

$ electron --enable-sandbox app.js

Please note that programmatically adding the command line switch “enable-
sandbox" is not sufficient, as the code responsible for appending arguments
runs after it is possible to make changes to Chromium's sandbox settings.
Electron needs to be executed from the beginning with the enable-sandbox
argument.

At the time of writing, sandboxing for the webview tag is still not supported.

 � of � WWW.DOYENSEC.COM7 21

http://www.doyensec.com

Electron Security Checklist

Review the use of command line arguments

With Electron, it is possible to programmatically insert command line arguments to
modify the behavior of the framework foundation (LibChromiumcontent and Node.js)
and Electron itself. For instance, setting the variable —proxy-server will force
Chromium to use a specific proxy server, despite system settings. To debug JavaScript
executed in the main process, Electron allows to attach an external debugger. This
feature can be enabled using the --debug or --debug-brk command line switch.
Additionally, the application can implement custom command line arguments.

Risk The use of additional command line arguments can increase the application
attack surface, disable security features or influence the overall security
posture.

For example, if Electron’s debugging is enabled, Electron will listen for V8
debugger protocol messages on the specified port. An attacker could
leverage the external debugger to subvert the application at runtime.

Auditing Review all occurrences of appendArgument and appendSwitch:

const {app} = require('electron')
app.commandLine.appendArgument(‘debug’)
app.commandLine.appendSwitch(‘proxy-server', '8080')

Search for custom arguments (e.g. —debug or —debug-brk) in
package.json, and within the application codebase.

 � of � WWW.DOYENSEC.COM8 21

http://www.doyensec.com

Electron Security Checklist

 
Review the use of preload scripts

Despite disabling nodeIntegration and enabling sandbox, preload scripts have access
to Node.js APIs. When node integration is turned off, the preload script can reintroduce
Node global symbols back to the global scope. Also, the current implementation of the
Chromium sandbox still allows access to all underlying Electron/Node.js primitives
using either the remote module or internal IPC:

#1 - Sandbox bypass in preload scripts using remote
 app = require(‘electron').remote.app

#2 - Sandbox bypass in preload scripts using internal Electron IPC messages
{ipcRenderer} = require('electron')
app = ipcRenderer.sendSync('ELECTRON_BROWSER_GET_BUILTIN', 'app')

As demonstrated in the examples above, a malicious preload script can still obtain a
reference to the application object by leveraging the remote module, which provides a
simple way to do inter-process communication (IPC) between the renderer process and
the main process. Alternatively, it is also possible to emulate the internal IPC
mechanism sending a message to the main process synchronously via ELECTRON_
internal channels. Considering the privileged access available in preload, the code of
preload scripts need to be carefully reviewed.

Additionally, it is highly recommend to leverage the experimental context isolation
feature. contextIsolation introduces JavaScript context isolation for preload scripts, as
implemented in Chrome Content Scripts. This option should be used when loading
potentially untrusted resources to ensure that the loaded content cannot tamper with
the preload script and any Electron APIs being used. The preload script will still have
access to global variables, but it will use its own set of JavaScript builtins
(Array, Object, JSON, etc.) and will be isolated from any changes made to the global
environment by the loaded page.

Risk Improper use of preload scripts can introduce nodeIntegration or sandbox
bypasses, in addition to other vulnerabilities.

If context isolation is not used, there is a risk that malicious code in preload
scripts could tamper JavaScript native functions that the preload script and
Electron APIs make use of.

 � of � WWW.DOYENSEC.COM9 21

https://developer.chrome.com/extensions/content_scripts%23execution-environment
http://www.doyensec.com

Electron Security Checklist

Auditing Search for preload within the webPreferences of BrowserWindow. Manually
review the imported scripts.

If preload is used, make sure that webPreferences also includes
contextIsolation: true or contextIsolation: 1

 � of � WWW.DOYENSEC.COM10 21

http://www.doyensec.com

Electron Security Checklist

 
Do not use disablewebsecurity

This flag gives access to the underline disablewebsecurity Chromium option. When
this attribute is present, the guest page will have web security disabled. For instance,
Same-Origin Policy will not be enforced.

Please note that the Same-Origin Policy is actually not strictly enforced by the current
implementation of Electron, due to a design flaw. As a result, this option is practically
irrelevant at the moment. Apart from this, disabling web security will impact the
application on future Electron releases, in which SOP will be supposedly enforced.
 
At the time of writing this document, even with web security enabled, remote pages can
still inject JavaScript in a different domain using one of the following tricks: 

#1 - SOP bypass using window.location
<script> 
win = window.open("https://doyensec.com");

win.location = "javascript:alert(document.domain)";
</script>

#2 - SOP bypass using BrowserWindowProxy eval
<script>

win = window.open("https://doyensec.com"); 
win.eval("alert(document.domain)");
</script> 

Risk When enabled, SOP is not enforced and mixed content is allowed (e.g. an
https page using JavaScript, CSS from http origins).

Auditing In the webPreferences of BrowserWindow, look for webSecurity:false or
webSecurity:0

mainWindow = new BrowserWindow({
 "webPreferences": {
 "webSecurity": false
 }
 });

In the webview tag, look for disablewebsecurity:

<webview src="https://doyensec.com/" disablewebsecurity></webview>

Additionally, search for the runtime flag —disable-web-security in
package.json, and within the application codebase.

 � of � WWW.DOYENSEC.COM11 21

http://www.doyensec.com

Electron Security Checklist

 
Do not allow insecure HTTP connections

When using HTTP as the transport, security is provided by Transport Layer
Security (TLS). TLS, and its predecessor SSL, are widely used on the Internet to
authenticate a service to a client, and then to provide confidentiality to the channel.

Transport security is a critical mechanism for every Electron application. Three
problematics are particularly important:  

• HTTP. Directly fetching content using plain-text HTTP opens your application to
Man-in-the-Middle attacks 

• Mixed content. Mixed content occurs when the initial HTML page is loaded over a
secure HTTPS connection, but other resources (such as images, videos, stylesheets,
scripts) are loaded over an insecure HTTP connection 

• Insecure TLS Validation. Security issues and voluntary opt-out of TLS certificates
validation may allow an attacker to bypass Transport Layer Security

Risk HTTP, Mixed Content and TLS validation opt-out should not be used, as it
makes possible to sniff and tamper the user’s traffic. 

If nodeIntegration is also enabled, an attacker can inject malicious
JavaScript and compromise the user’s host.

Auditing • HTTP  

Search for resources loaded using http like:

win = new BrowserWindow(...);
win.loadURL('http://example.com/');

• Mixed content 

Search for allowRunningInsecureContent set to true/1 within the
webPreferences of BrowserWindow or in the webview tag:

mainWindow = new BrowserWindow({
 "webPreferences": {
 "allowRunningInsecureContent": true
 }
 });

< w e b v i e w s r c = " h t t p s : // d o y e n s e c . c o m " w e b p r e f e r e n c e s
=“allowRunningInsecureContent”></webview>

 � of � WWW.DOYENSEC.COM12 21

http://www.doyensec.com

Electron Security Checklist

 

Auditing • Insecure TLS Validation  

Verify that the application does not explicitly opt-out from TLS validation.
Look for occurrences of certificate-error and setCertificateVerifyProc:

app.on('certificate-error', (event, webContents, url, error, certificate,
callback) => {
 if (url === 'https://doyensec.com') {
 callback(true) //Go ahead anyway
 } else {
 callback(false)
 }})

win.webContents.session.setCertificateVerifyProc((request, callback) => {
 const {hostname} = request
 if (hostname === ‘doyensec.com') {
 callback(0) //success and disables certificate verification
 } else {
 callback(-3) //use the verification result from chromium
 }})

Additionally, verify custom TLS certificates imported into the platform
certificate store with app.importCertificate(options, callback).

 � of � WWW.DOYENSEC.COM13 21

http://www.doyensec.com

Electron Security Checklist

 
Do not use Chromium’s experimental features

The experimentalFeatures, experimentalCanvasFeatures, blinkFeatures flags can be
used to enable Chromium’s features, which increase the overall attack surface for
production applications. blinkFeatures allows to selectively specify a feature of Blink
(Chromium web browser engine) to be enabled during runtime; a complete list of flags
is available in the Chromium source code repository.

Risk Experimental features may introduce bugs and increase the application
attack surface.

Auditing Search for experimentalFeatures, experimentalCanvasFeatures flags set to
true/1 within the webPreferences of BrowserWindow or in the webview tag:

mainWindow = new BrowserWindow({
 "webPreferences": {
 “experimentalCanvasFeatures": true
 }
 });

Also, look for blinkFeatures selections:

<webview src="https://doyensec.com/" blinkfeatures="PreciseMemoryInfo,
CSSVariables"></webview>

 � of � WWW.DOYENSEC.COM14 21

https://cs.chromium.org/chromium/src/third_party/WebKit/Source/platform/RuntimeEnabledFeatures.json5?l=62
http://www.doyensec.com

Electron Security Checklist

 
Limit navigation flows to untrusted origins

The creation of a new browser window or the navigation to untrusted origins may lead
to severe vulnerabilities. Additionally, middle-click causes Electron to open a link within
a new window. Under certain circumstances, this can be leveraged to execute arbitrary
JavaScript in the context of a new window.

Risk Navigation to untrusted origins can facilitate attacks, thus it is recommend to
limit the ability of a BrowserWindow and webview guest page to initiate new
navigation flows.

Middle-click events can be leverage to subvert the flow of the application.

Auditing Creation of a new window or the navigation to a specific origin can be
inspected and validated using callbacks for the new-window and will-
navigate events. Your application can limit the navigation flows by
implementing something like:

win.webContents.on('will-navigate', (event, newURL) => {
 if (win.webContents.getURL() !== ‘https://doyensec.com’) {
 event.preventDefault();
 }
})

In the default configuration of Electron (at the time of writing), middle-click
support needs to be explicitly disabled by the application using:

mainWindow = new BrowserWindow({
 "webPreferences": {
 “disableBlinkFeatures": “Auxclick”
 }
 });

 � of � WWW.DOYENSEC.COM15 21

http://www.doyensec.com

Electron Security Checklist

 
Use setPermissionRequestHandler for untrusted origins

When loading remote untrusted content, it is recommended to enable Session’s
permissions handler, which can be used to respond to permission requests.

It is possible to access the session of existing pages by using the session property
of WebContents, or from the session module.

win = new BrowserWindow()
win.loadURL('https://doyensec.com')

ses = win.webContents.session
console.log(ses.getUserAgent())

Using setPermissionRequestHandler, it is possible to write custom code to limit
specific permissions (e.g. openExternal) in response to events from particular origins.

ses.setPermissionRequestHandler((webContents, permission, callback) => {

 if (webContents.getURL() !== ‘https://doyensec.com’ && permission === 'openExternal') {
 return callback(false)

 } else {

 return callback(true)
 }})

Please note that Electron’s Session object is a powerful mechanism with access to
many properties of the browser sessions, cookies, cache, proxy settings, etc. Use with
caution!

Risk This setting can be used to limit the exploitability in applications that load
remote content. Not enforcing custom checks for permission requests
(media, geolocation, notifications, midiSysex, pointerLock, fullscreen,
openExternal) leaves the browser session under full control of the remote
origin.

Auditing Look for occurrences of setPermissionRequestHandler.

If used, manually evaluate the implementation and security of the custom
callback.

If not used, the application does not limit session permissions at all.

 � of � WWW.DOYENSEC.COM16 21

http://www.doyensec.com

Electron Security Checklist

 
Do not use insertCSS, executeJavaScript or eval with user-supplied
content

insertCSS, executeJavaScript functions allow to inject respectively CSS and JavaScript
from the main process to the renderer process. Instead, eval allows JavaScript
execution in the context of a BrowserWindowProxy. If the arguments are user-supplied,
they can be leveraged to execute arbitrary content and modify the application behavior.

Risk In a vulnerable application, a remote page could leverage these functions to
subvert the flow of the application by injecting malicious CSS or JavaScript.

Auditing Search for occurrences of insertCSS, executeJavaScript and eval in both
BrowserWindow, webview tag and all other JavaScript resources.

 � of � WWW.DOYENSEC.COM17 21

http://www.doyensec.com

Electron Security Checklist

 
Do not allow popups in webview

When the allowpopups attribute is present, the guest page will be allowed to open new
windows. Popups are disabled by default.

Risk Disabling popups reduces the risk of UI-redressing attacks and limits the
exploitability of window abuses. Additionally, popups are often used for
intrusive advertising and persistency in JavaScript-based attacks.

Auditing Search for occurrences of allowpopups in webview tags:  
 
<webview src=“https://doyensec.com/" allowpopups></webview>

 � of � WWW.DOYENSEC.COM18 21

http://www.doyensec.com

Electron Security Checklist

 
Review the use of custom protocol handlers

Electron allows to define custom protocol handlers so that the application can use
mobile-like deep linking to exercise specific features. An example is the fb://profile/
33138223345 URI to open a specific Facebook profile. Since custom protocol handlers
can be triggered by arbitrary origins, it is important to evaluate how they are
implemented and whether user-supplied parameters can lead to security vulnerabilities
(e.g. injection flaws).

Risk The use of custom protocol handlers opens the application to vulnerabilities
triggered by users clicking on custom links or arbitrary origins forcing the
navigation to crafted links.

Auditing To register a custom protocol handler, it is necessary to use one of the
following functions:

• setAsDefaultProtocolClient
• registerStandardSchemes
• registerServiceWorkerSchemes
• registerFileProtocol
• registerHttpProtocol
• registerStringProtocol
• registerBufferProtocol

Search for those occurrences and manually review the implementation.

 � of � WWW.DOYENSEC.COM19 21

http://www.doyensec.com

Electron Security Checklist

 
Review the use of openExternal

Shell’s openExternal() allows opening a given external protocol URI with the desktop’s
native utilities. For instance, on macOS, this function is similar to the ‘open’ terminal
command utility and will open the specific application based on the URI and filetype
association. When openExternal is used with untrusted content, it can be leveraged to
execute arbitrary commands, as demonstrated by the following example:

const {shell} = require('electron')
shell.openExternal('file:///Applications/Calculator.app')

Risk Improper use of openExternal can be leveraged to compromise the user’s
host. Electron’s Shell provides powerful primitives that must be used with
caution.

Auditing Manually review all occurrences of openExternal to ensure that no user-
supplied content can be injected without validation.

 � of � WWW.DOYENSEC.COM20 21

http://www.doyensec.com

Electron Security Checklist

 
Bibliography

• Electron Documentation - https://electron.atom.io/docs/
• Electron Source Code - https://github.com/electron/
• Electron Issues - https://github.com/electron/electron/issues
• As it stands, Electron security - http://blog.scottlogic.com/2016/03/09/As-It-Stands-

Electron-Security.html
• An update on Electron Security - http://blog.scottlogic.com/2016/06/01/An-update-

on-Electron-Security.html
• Hacking Mattermost #2: Year of Node.js on the Desktop - http://haxx.ml/post/

145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
• Chrome Content Scripts - https://developer.chrome.com/extensions/

content_scripts#execution-environment
• Chromium Sandbox - https://chromium.googlesource.com/chromium/src/+/master/

docs/design/sandbox.md
• Supported Chrome Command Line Switches - https://github.com/electron/electron/

blob/master/docs/api/chrome-command-line-switches.md

 � of � WWW.DOYENSEC.COM21 21

http://www.doyensec.com
https://electron.atom.io/docs/
https://github.com/electron/
https://github.com/electron/electron/issues
http://blog.scottlogic.com/2016/03/09/As-It-Stands-Electron-Security.html
http://blog.scottlogic.com/2016/03/09/As-It-Stands-Electron-Security.html
http://blog.scottlogic.com/2016/06/01/An-update-on-Electron-Security.html
http://blog.scottlogic.com/2016/06/01/An-update-on-Electron-Security.html
http://haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
http://haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
http://haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
https://developer.chrome.com/extensions/content_scripts#execution-environment
https://developer.chrome.com/extensions/content_scripts#execution-environment
https://developer.chrome.com/extensions/content_scripts#execution-environment
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://github.com/electron/electron/blob/master/docs/api/chrome-command-line-switches.md
https://github.com/electron/electron/blob/master/docs/api/chrome-command-line-switches.md
https://github.com/electron/electron/blob/master/docs/api/chrome-command-line-switches.md

